Joint COVID-19 Response Legislative Workgroup

Teleconference Meeting

THIS MEETING WILL BEGIN SHORTLY

April 29, 2020 10:00 a.m.

Agenda Overview

(10:00 a.m. - 10:05 a.m.)

- I. Presentation from Dr. Justin Lessler, Johns Hopkins University
- II. Presentation from Dr. Lei Zhang, University of Maryland
- III. Presentation from Dr. Jeffrey Shaman, Columbia University
- IV. Workgroup Discussion and Closing Remarks

Presentation from from Dr. Lessler, JHU

(10:05 a.m. - 10:20 a.m.)

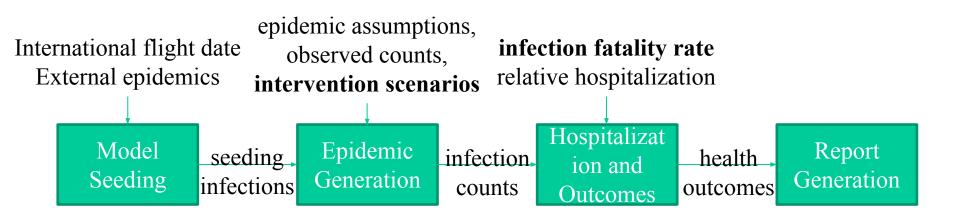
- Justin Lessler, Ph.D.
 Associate Professor, Johns Hopkins Bloomberg School of Public Health
- Limited Questions and Answers
- Contact:

Elizabeth Hafey <u>Elizabeth.Hafey@jhu.edu</u>

Scenario Modeling Results for Maryland and Beyond

Justin Lessler for the JHU-IDDynamics COVID-19 Working Group

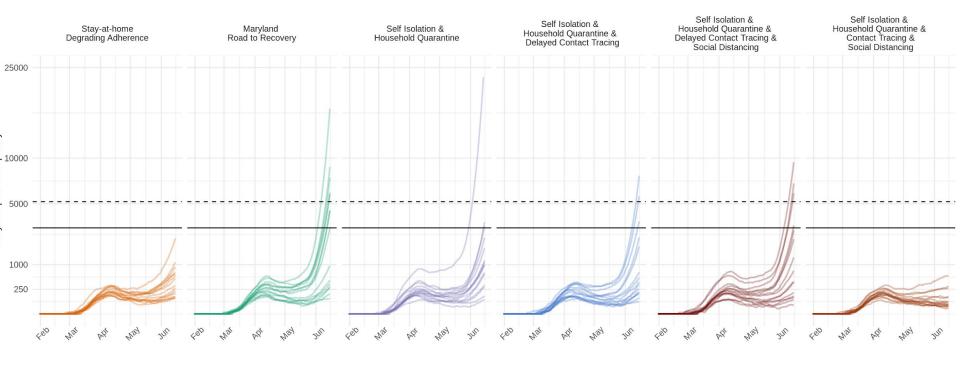
Baltimore MD 29 April 2020



Approach

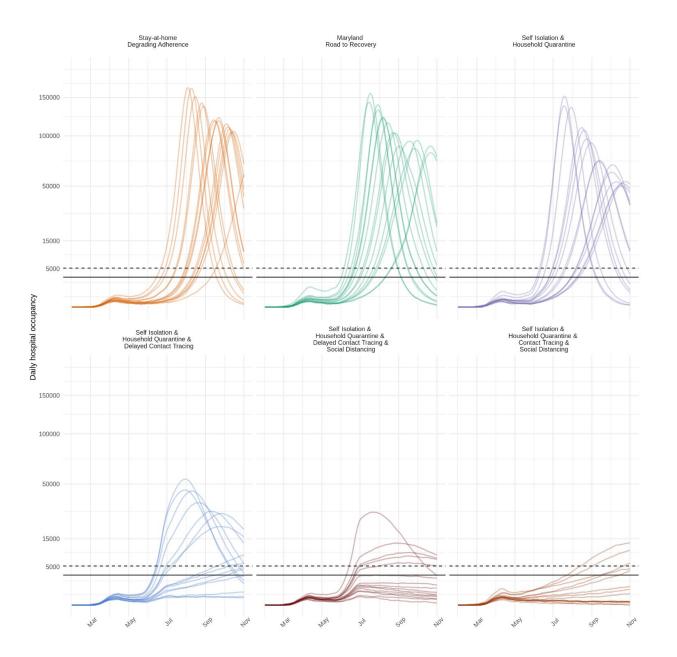
- Focus on scenarios relevant to planning decisions.
- Use rough approximations given best knowledge of disease dynamics, current situation and severity.
 - differences more informative than absolutes
- Use a pipelined approach to ease integration of new knowledge and comparison of models

Scenario Modeling Pipeline

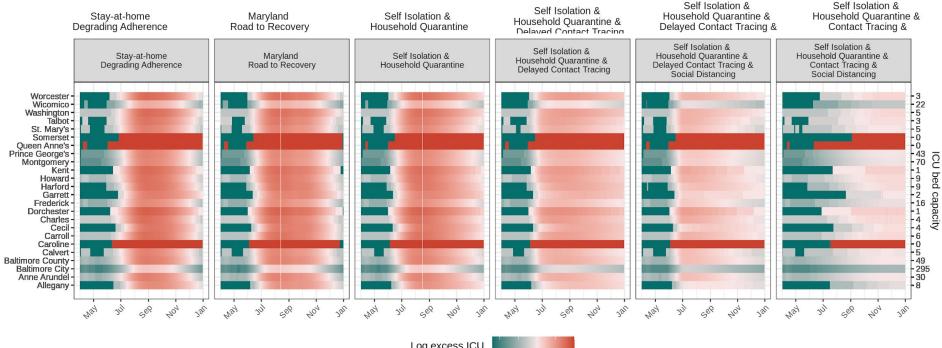


- 1. Continued Stay-at-Home Measures with Declining Adherence: Continuation of measures currently in place in Maryland, with declining adherence, ending December 31, 2020
- 2. Maryland Strong Roadmap to Recovery: Current measures, followed by stages 1 and 2 of the Maryland Strong Roadmap to Recovery, ending December 31, 2020
- **3. Self isolation (SI) and Household (HH) quarantine:** *Current measures, followed by 90% compliant self isolation and household quarantine*
- 4. SI, HH, Delayed Manual Contact Tracing: Current measures, followed by 90% compliant self isolation, household quarantine, and delayed manual contact tracing of non-household contacts
- **5. SI, HH, Delayed Manual Contact Tracing + Social distancing:** *Current measures, followed by 90% compliant self isolation and household quarantine, delayed manual contact tracing of non-household contacts, and maintained social distancing*
- 6. HH, Manual Contact Tracing + Social distancing: Current measures, followed by 90% compliance self isolation and household quarantine and manual contact tracing of non-household contacts and maintained social distancing

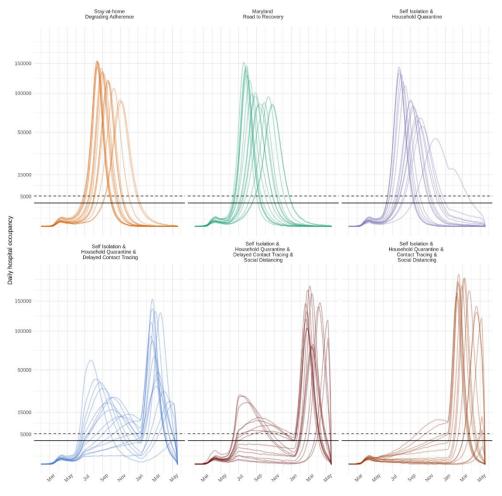
Maryland Strong Roadmap to Recovery


Start Date	End Date	R	Reductions	Intervention Name
01-31-2020	03-12-2020	2.0 - 3.0	-	-
03-13-2020	03-29-2020	0.70 - 1.68	44 - 65%	Mildly restrictive social distancing
03-30-2020	05-14-2020	0.34 - 0.87	71 - 83%	Current Maryland Measures (full adherence)
05-15-2020	09-02-2020	1.26 - 2.31	23 - 37%	Road to Recovery, Stage 1
09-03-2020	12-31-2020	1.60 - 2.70	10 - 20%	Road to Recovery, Stage 2

Hospital occupancy

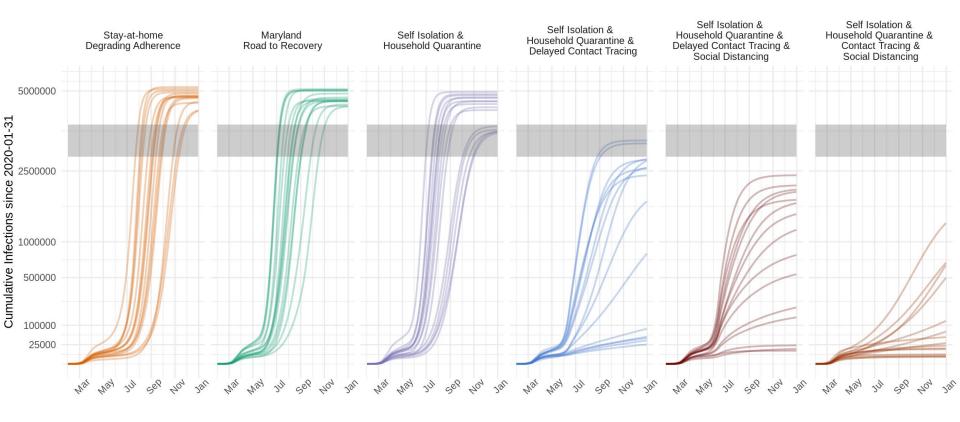


ICU Bed Needs



Log excess ICU beds needed

-5.0 -2.5 0.0 2.5 5.0



PLANNING SCENARIO – NOT A FORECAST

Simple Math

Maryland

New York City $858 \times \frac{1.5}{.005} = 257,400$ $12,509 \times \frac{1.5}{.005} = 3,752,700$ $\frac{260,000}{6,000,000} = 4\%$ $\frac{3,750,000}{8,400,000} = 47\%$

 $R = R_0 \times (1 - 0.04) = 1.9$ to $2.9R = R_0 \times (1 - 0.47)$ = 1.1 to 1.6

ID Dynamics COVID-19 Working Group et al.

- Johns Hopkins Infectious Disease Dynamics
- Elizabeth C. Lee
- Kyra H. Grantz
- Hannah R. Meredith
- Qifang Bi
- Joshua Kaminsky
- Stephen A. Lauer
- Justin Lessler
- Shaun A. Truelove
- EPFL
- Joseph C. Lemaitre
- University of Utah
- Lindsay T. Keegan

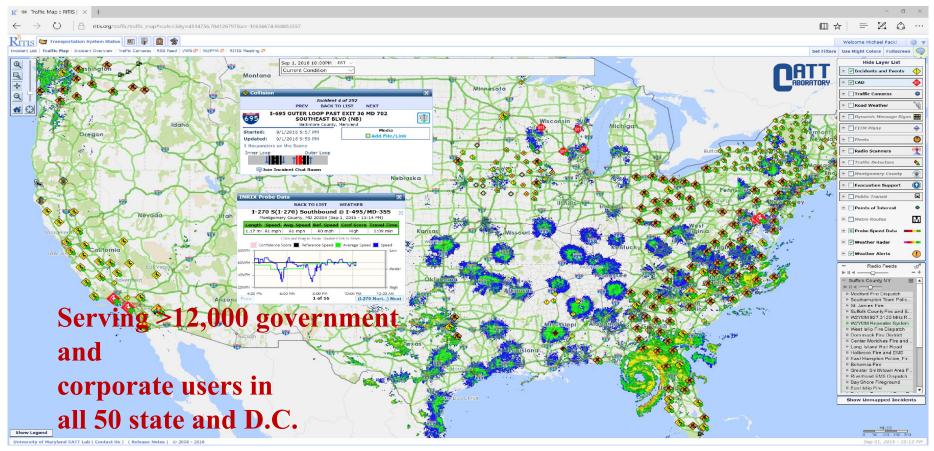
Presentation from Dr. Zhang, UMD

(10:20 a.m. - 10:35 a.m.)

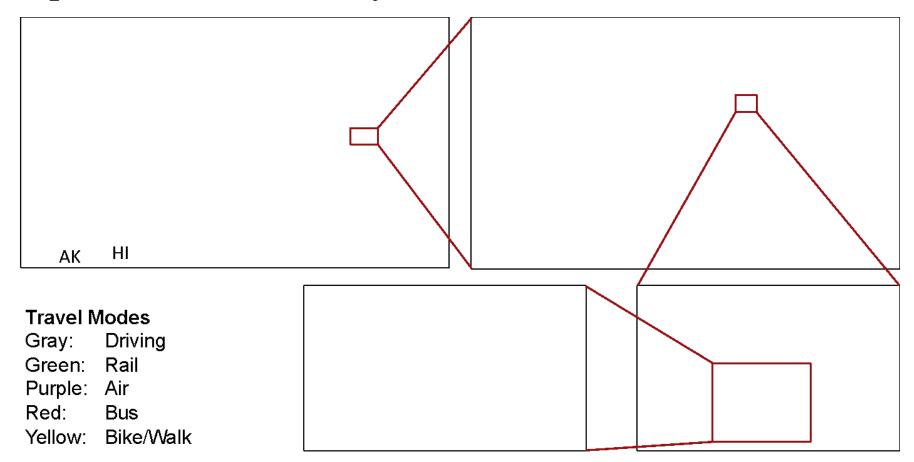
- Lei Zhang, Ph.D.
 Professor, University of Maryland Department of Civil and Environmental Engineering
- Limited Questions and Answers
- Contact:

Molly McKee-Seabrook mckee@umd.edu Briefing to the COVID Group at the Maryland General Assembly on April 29, 2020

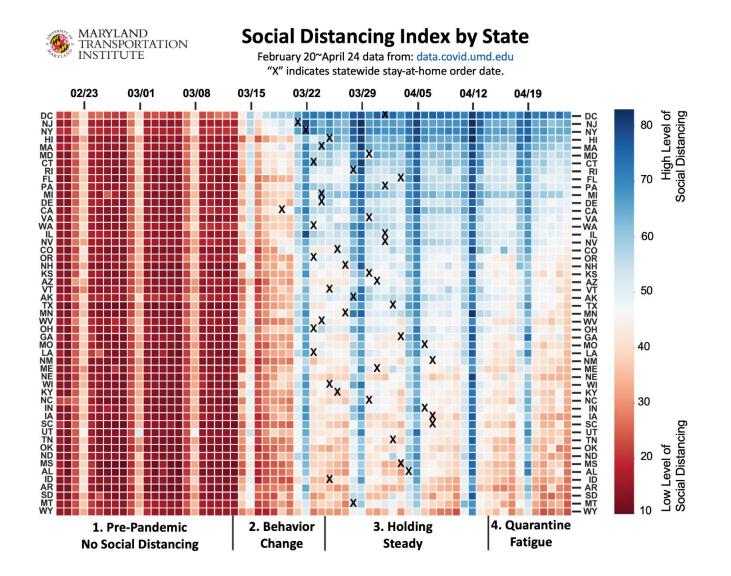
An Interactive COVID-19 Impact Analysis Platform for Situational Awareness and Decision Support

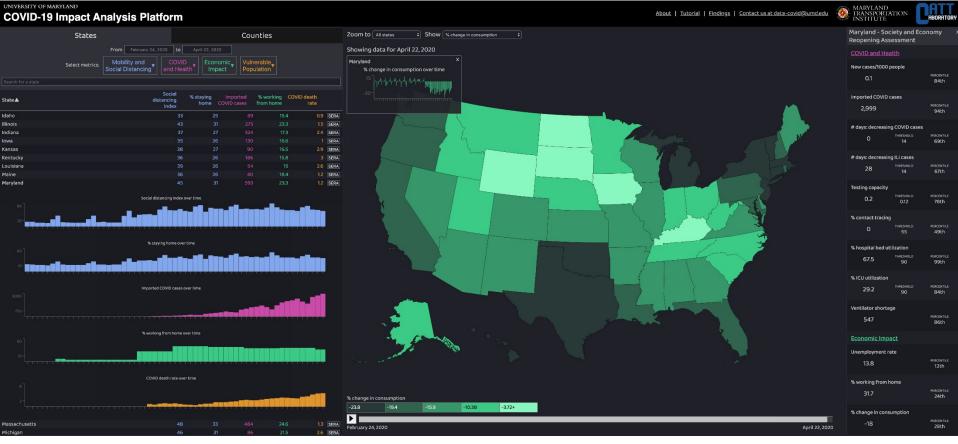


Lei Zhang, Ph.D.

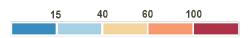

Director, Maryland Transportation Institute Herbert Rabin Distinguished Professor of Engineering University of Maryland – College Park

Email: lei@umd.edu; Team Email: data-covid@umd.edu; Web: data.covid.umd.edu


Largest Transportation Data Center in the Nation

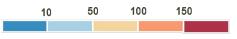

Trip and Visit Data Daily from >150 million Phones

Society-Economy Reopening Assessment (SERA)


Νι	ımber	Variable Name	Value	Ranking (Percentile)			
	Oppiel distancing index	Category A Name: Mobili		40			
1	Social distancing index		54	12			
2	% staying home		35.00	-			
3	Trips/person		2.80	-			
4	% External trips		34.90	90			
5	Miles/person		22.00	-			
6	Work trips/person		0.40	-			
7	Non-work trips/person		2.40	-			
8	Transit share		8.53	90			
	Category B Name: COVID-19 and Health						
9	New COVID cases		582	78			
10	New cases/1000 peopl		0.11	84			
11	Active cases/1000 peo		2.33	78			
12	Imported COVID cases		2,999	94			
13	COVID exposure/1000		6.05	-			
14	#days: decreasing COV		0 [14]	69			
15	#days: decreasing ILI c	ases	28 [14]	67			
16	Testing capacity		0.19 [0.12]	78			
17	Tests done/1000 people	e	12.66	47			
18	% contact tracing		1.72 [2]	12			
19	% hospital bed utilization	n	67.50 [90]	99			
20	% ICU utilization		29.21 [90]	84			
21	Hospital beds/1000 peo	ople	2.09	96			
22	ICUs/1000 people		0.22	88			
23	Ventilator/PPE shortage	e	547	86			
		Category C Name:	Economic Impact				
24	Unemployment claims/	1000 people	7.72	14			
25	Unemployment rate		13.78	12			
26	% working from home		31.70	24			
27	Cumulative inflation rat	e	0.23	-			
28	% change in consumpt	ion	-18.05	28			
		Category D Name: V	ulnerable Population				
29	% people older than 60)	20.77	22			
30	Median income		84,342	-			
31	% African Americans		29.31	-			
32	% Hispanic Americans		9.81	-			
33	% Male		48.48	-			
34	Population density		483.89	-			
35	Employment density		229.56	-			
36	# hot spots/1000 peopl	e	132.50	49			
37	COVID death rate		4.71	75			
38	Population		6042718	-			

SERA MD Results Assessment on

- 4/22/2020
 The SERA tool provides data and insight on both reopening readiness and post-reopening decision support.
- It summarizes the percentile rankings in the nation for key factors and compare them with gating criteria.
- SERA monitors social distancing behavior change and offers community-level contact tracing.
- It analyzes causes for new outbreaks and suggests containment strategies.
- SERA also provides detailed economic and business impact estimates.


Use case: Outbreaks due to Imported Cases

Number of Imported Cases by Out-of-State Travel to Maryland 03/16-04/22

Since 3/16, 31.1 million (19.8 million excluding D.C.) out-of-state trips are destined for MD

Number of Confirmed COVID-19 Cases in Maryland

03/16-04/22

How can We Help You?

The UMD-led COVID-19 impact analysis platform team has:

- comprehensive and timely data on all important aspects of COVID-19 impact on mobility, health, economy, and society;
- more than 30 established faculty members from multiple Maryland universities with expertise in epidemiology, public health, medicine, economics, mobility, social sciences, and public policy;
- a top-notch platform development and research group that can quickly develop data analytics, visualizations, reports, and decision-support tools on demand; and
- computing support from Amazon that allows us to handle even the most demanding data queries and analysis within minutes/hours.

MTI Data-Driven Decision Support Capabilities

- Safety and Health
- •Emergency Management
- •Infrastructure Investment
- •Economic Development
- Equity and Social Justice
- Sustainability
- •Crime, Human Trafficking, etc.

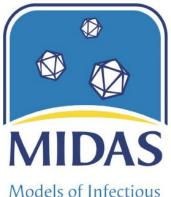
BIG DATA FOR PUBLIC GOOD

Presentation from Dr. Shaman, Columbia Univ.

(10:35 a.m. - 10:50 a.m.)

- Jeffrey Shaman, Ph.D.
 Professor, Columbia University Mailman School of Public Health
- Limited Questions and Answers

COLUMBIA UNIVERSITY of PUBLIC HEALTH ENVIRONMENTAL HEALTH SCIENCES


COVID-19 Transmission

Jeffrey Shaman April 29, 2020

Funders

NIH (NIGMS)/NSF (DMS) joint initiative to support research at the interface of the biological and mathematical sciences

Disease Agent Study

Funded by the National Institutes of Health

Collaborators

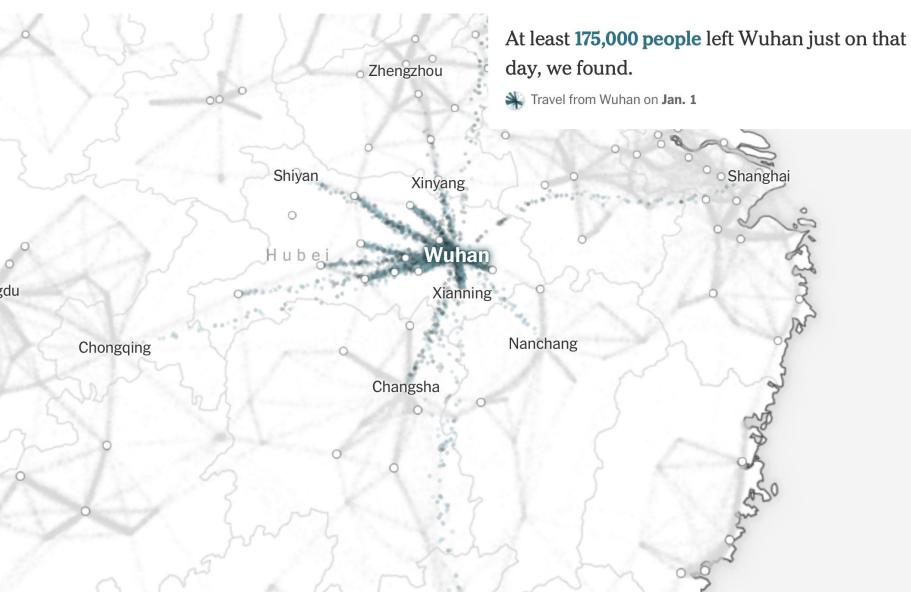
Columbia/Mailman

Sen Pei Wan Yang Sasikiran Kandula Marta Galanti Teresa Yamana

Other

Ruiyin Li (Imperial)

• **Cohort** — 214 individuals from October 2016 to April 2018.


(two daycares, CUMC, pediatric and adult ED, high school). Weekly swabs + daily symptoms .

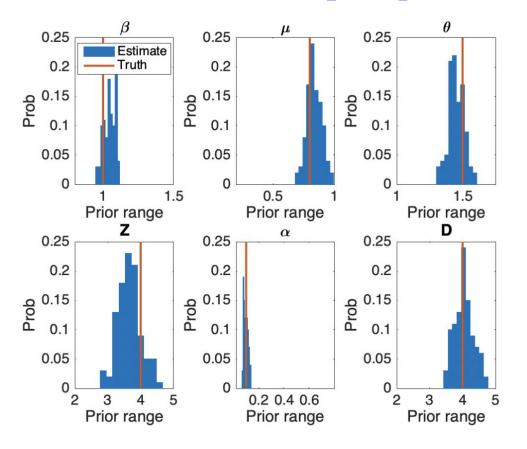
Virome of Manhattan Most Infections Undocumented

VIRUS	EPISODES*	MA	P(MA v _i)	HOME	P(HOME v _i)	MEDS	P(MEDS v _i)
Influenza	32	7	0.22	14	0.44	18	0.56
RSV	30	2	0.07	6	0.20	12	0.40
PIV	30	3	0.10	4	0.15	9	0.30
HMPV	20	4	0.20	7	0.35	10	0.50
HRV	275	24	0.09	31	0.11	70	0.25
Adenovirus	63	9	0.14	10	0.16	14	0.22
Coronavirus	137	6	0.04	13	0.09	36	0.25

*group of consecutive weekly specimens from a given individual that were positive for the same v (allowing for a one-week gap to account for false negatives and temporary low shedding).

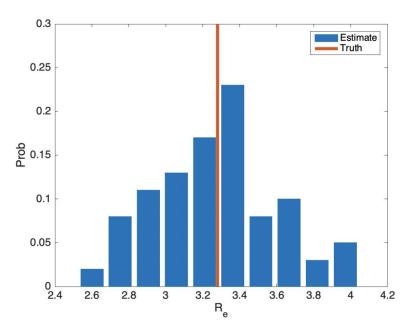
COVID-19 Rapid Spread

New York Times, March 22, 2018

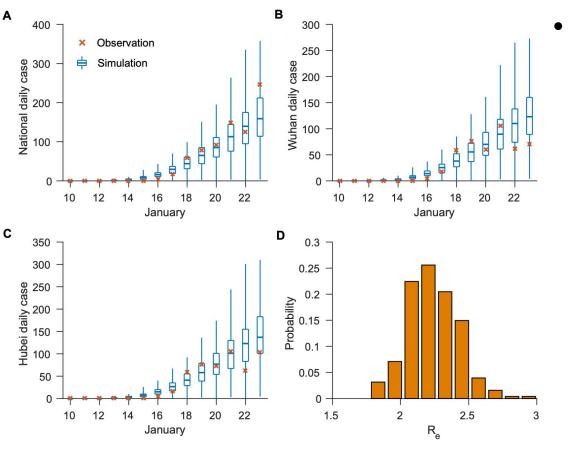

$$\begin{split} \frac{dS_i}{dt} &= -\frac{\beta S_i l_i^r}{N_i} - \frac{\mu \beta S_i l_i^u}{N_i} + \theta \sum_j \frac{M_{ij} S_j}{N_j - l_j^r} - \theta \sum_j \frac{M_{ji} S_i}{N_i - l_i^r} \\ \frac{dE_i}{dt} &= \frac{\beta S_i l_i^r}{N_i} + \frac{\mu \beta S_i l_i^u}{N_i} - \frac{E_i}{Z} + \theta \sum_j \frac{M_{ij} E_j}{N_j - l_j^r} - \theta \sum_j \frac{M_{ji} E_i}{N_i - l_i^r} \\ \frac{dl_i^r}{dt} &= \alpha \frac{E_i}{Z} - \frac{l_i^r}{D} \\ \frac{dl_i^u}{dt} &= (1 - \alpha) \frac{E_i}{Z} - \frac{l_i^u}{D} + \theta \sum_j \frac{M_{ij} l_j^u}{N_j - l_j^r} - \theta \sum_j \frac{M_{ji} l_i^u}{N_i - l_i^u} \\ N_i &= N_i + \theta \sum_j M_{ij} - \theta \sum_j M_{ji} \end{split}$$

- Metapopulation network model representing 375 cities in China
- Use Tencent travel records during the Chunyun spring festival
- Coupled with data assimilation methods
- Use daily observations from all 375 cities
- Simulate January 10-23

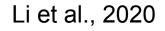
Li et al., 2020

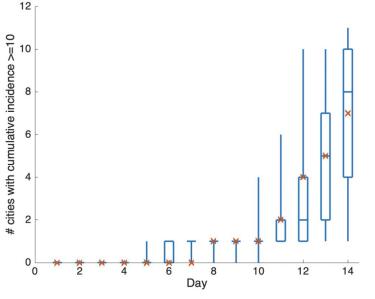

- $$\begin{split} \frac{dS_i}{dt} &= -\frac{\beta S_i l_i^r}{N_i} \frac{\mu \beta S_i l_i^u}{N_i} + \theta \sum_j \frac{M_{ij} S_j}{N_j l_j^r} \theta \sum_j \frac{M_{ji} S_i}{N_i l_i^r} \\ \frac{dE_i}{dt} &= \frac{\beta S_i l_i^r}{N_i} + \frac{\mu \beta S_i l_i^u}{N_i} \frac{E_i}{Z} + \theta \sum_j \frac{M_{ij} E_j}{N_j l_j^r} \theta \sum_j \frac{M_{ji} E_i}{N_i l_i^r} \\ \frac{dI_i^r}{dt} &= \alpha \frac{E_i}{Z} \frac{l_i^r}{D} \\ \frac{dI_i^u}{dt} &= (1 \alpha) \frac{E_i}{Z} \frac{l_i^u}{D} + \theta \sum_j \frac{M_{ij} l_j^u}{N_j l_j^r} \theta \sum_j \frac{M_{ji} l_i^u}{N_i l_i^u} \\ N_i &= N_i + \theta \sum_j M_{ij} \theta \sum_j M_{ji} \end{split}$$
- Simulate January 10-23
- Prior to travel restrictions
- The model separately represents documented and undocumented infections
- The model has a separate contagiousness for documented/undocumente d infections

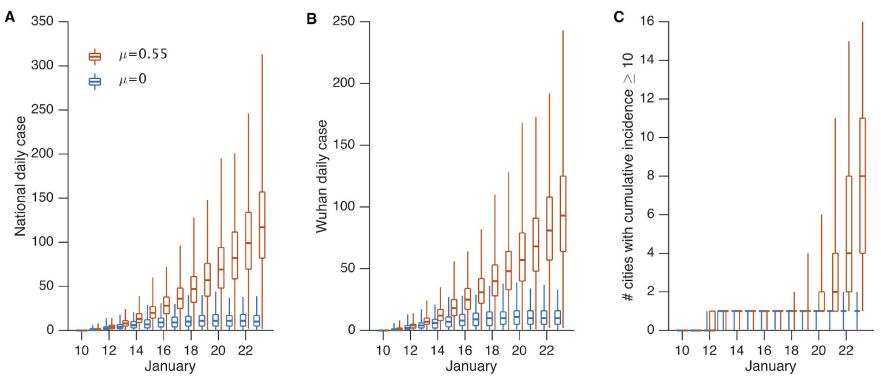
Li et al., 2020


Li et al., 2020

 Synthetic test of model-inference parameter estimation using model-generated observations

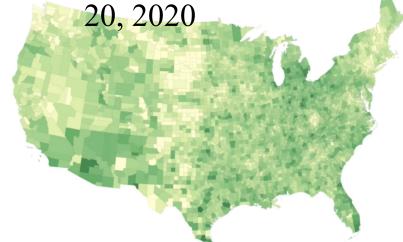



Parameter	Median (95% CIs)
Transmission rate (β , <u>days⁻¹</u>)	1.12 (1.04, 1.18)
Relative transmission rate (μ)	0.55 (0.46, 0.62)
Latency period (Z, days)	3.69 (3.28, 4.03)
Infectious period (D, days)	3.48 (3.18, 3.74)
Reporting rate (α)	0.14 (0.10, 0.18)
Basic reproductive number (R_e)	2.38 (2.04, 2.77)
Mobility factor (θ)	1.36 (1.28, 1.43)


- Estimate that 14% of infections are documented
- 86% are undocumented
- Per person, undocumented infections are on average half as contagious (55%) as documented infections
- 2.38 reproductive number

Simulations with the parameter estimates match the observed outbreak

 Simulations show without transmission from undocumented cases, confirmed cases decrease 79%


Li et al., 2020

Documentation History of CoV

- SARS: sub-clinical infection rates believed to be low (WHO, 2003)
- MERS: 21% of laboratory identified cases were mild or asymptomatic (WHO, 2018)
- Seasonal Coronaviruses (229E, OC43, NL63, HKU1)
 - 135 infection events
 - >60% mild or asymptomatic
 - 4% sought medical care (all had either OC43 or HKU1—the two seasonal betacoronaviruses) (Shaman and Galanti, 2020)
- Our model-inference approach identifies a 14% documentation rate prior to travel restrictions (Li et al. 2020) and indicates that undocumented infections contribute substantially to COVID-19 transmission.

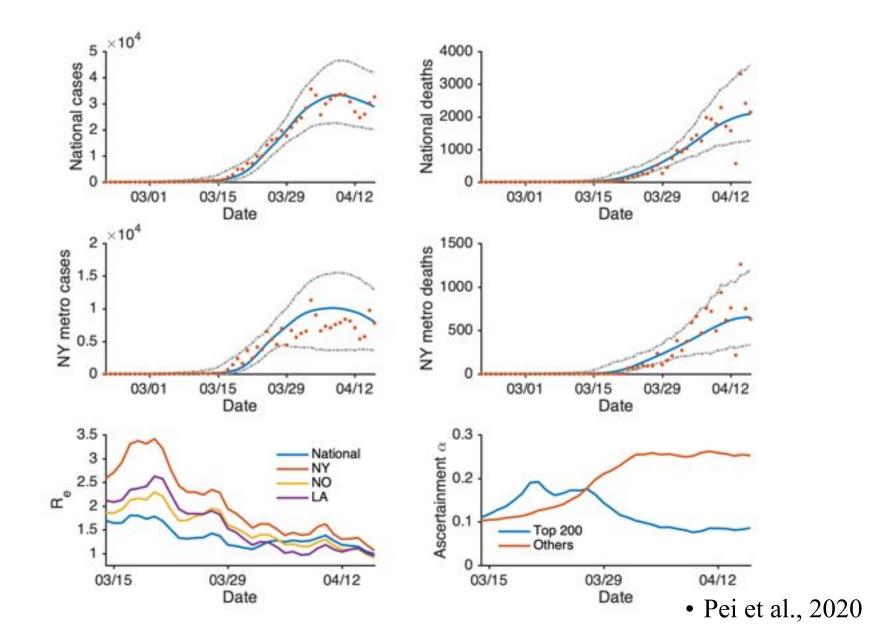
No Control Projections for the US Simulation - June 20, 2020

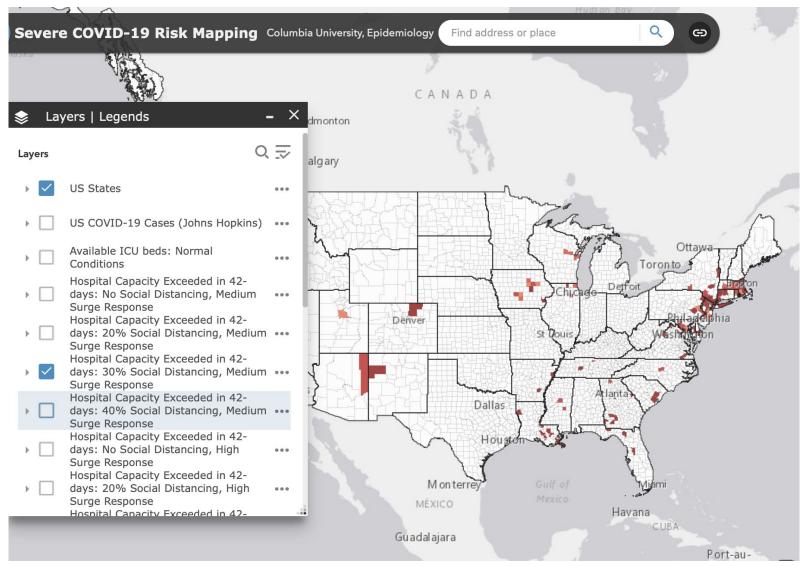
2020-06-20 Incidence

2020-06-20 Incidence 📕 10 📕 100 📕 1000

50% Transmission Reduction Simulation - June 20, 2020

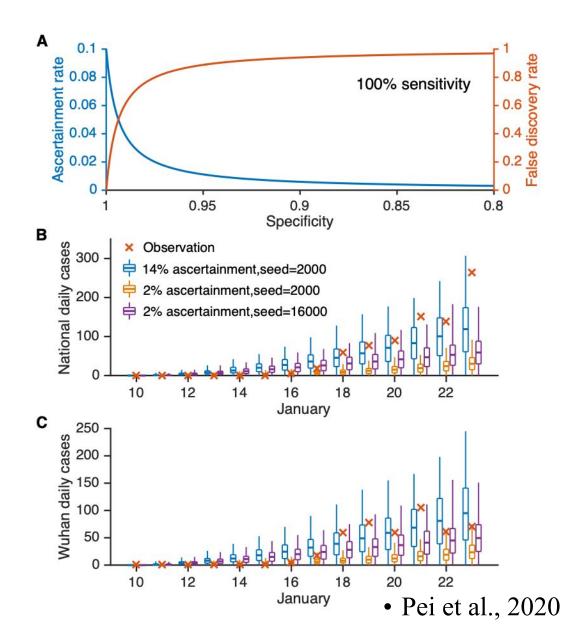
²⁰²⁰⁻⁰⁶⁻²⁰ Incidence 10 100 1000 10000 95% Movement Reduction Simulation - June 20, 2020


Pei and Shaman, 2020


Initial Estimates for the US (through March 13, 2020)

Parameter	Median (95% CIs)
Transmission rate (β , days ⁻¹)	0.95 (0.84, 1.06)
Relative transmission rate (μ)	0.64 (0.56, 0.70)
Latency period (Z, days)	3.59 (3.28, 3.99)
Infectious period (D, days)	3.56 (3.21, 3.83)
Reporting rate (α)	0.080 (0.069, 0.093)
Basic reproductive number (R_e)	2.27 (1.87, 2.55)
Mobility factor (θ)	0.15 (0.12,0.17)

Inference, Fitting and Projection


COVID-19 in the US-surge

Branas et al., 2020

Seroprevalence

- Recent studies suggest much lower ascertainment rates (Bendavid et al. 2020)
- Seroprevalence studies must account for false positives
- Ascertainment rates of 2% or less seem unlikely

Workgroup Discussion and Closing Remarks

(10:50 a.m. - 11:15 a.m.)

- Discussion Topics
 - Top concerns from constituents
 - Innovative policy solutions
 - Long-term systematic issues

• Next meeting with be May 6 at 10 a.m.