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Dear Chairman Wilson and members of the committee,

Food & Water Watch, on behalf of our 45,000 members in the state of Maryland, urges you to
oppose Governor Hogan's bill (HB1366) that would add power generating stations using carbon
sequestration as a Tier-1 option in Maryland's already dirty Renewable Energy Portfolio
Standard.

A recently released IPCC climate report predicted the worst impacts of climate change, like
severe food and water shortages, if we don't tackle the climate crisis by transitioning off of fossil
fuels immediately. This bill does the complete opposite and instead fosters more fossil fuel use.

As state legislators work on plans to reduce Maryland's carbon emissions, Governor Hogan's
plan to call carbon sequestration a "renewable" energy source threatens to pull us in the wrong
direction, given the fact that it would only allow fossil gas and biomass power plants to remain in
operation for decades longer. Carbon sequestration is an extremely expensive technology that
has not proven to work and will prop up polluting energy sources.

● Despite billions in public support, CCS technology has not met deployment expectations.
An examination of CCS projects reveals extensive delays, cost overruns and
cancellations. Once built, CCS is incapable of competing with other energy sources
without ratepayer or taxpayer bailouts.

● While renewable energy technologies can virtually eliminate greenhouse gas emissions
from electricity, equipping coal- and natural gas-fired plants with CCS would only reduce
greenhouse gas emissions by 39 percent.



● If all power plants used CCS, they would burn 39 percent more natural gas and 43
percent more coal, thereby exacerbating air and water pollution impacts, which fall
disproportionately on lower income people and communities of color. • Large quantities
of captured CO2 create a new dirty infrastructure footprint. Unproven schemes that store
CO2 mean more groundwater contamination, air pollution and earthquakes.

● CCS infrastructure poses numerous health and safety risks because carbon is prone to
leakage during transport, injection and long-term storage.142 Concentrated CO2 is
denser than air, and exposure to concentrations higher than 10 percent is potentially
fatal.

Technology exists to support a transition to 100 percent clean, renewable energy backed up by
storage and transmission at prices lower than current energy costs. This is where Maryland
needs to be investing - not in expensive new technologies that will only help the fossil fuel
industry.

We urge you to oppose carbon sequestration and ensure that false solutions like it are not
included in any climate legislation considered by the General Assembly.

Sincerely,
Lily Hawkins
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The United States is one of the biggest contributors to climate change through fossil fuel 
emissions.1 If the planet warms more than 1.5 degrees Celsius, increased temperatures could 
cause irreversible damage, potentially making parts of the world uninhabitable this century.2 
To avoid the 1.5 degree tipping point, we must rapidly decarbonize our grid and hit net zero 
global emissions by 2050.3 This requires a transition to 100 percent renewable energy,4 and 
not the technological band-aids that utilities, drillers and petrochemical companies push to 
alleviate their climate culpability. 

The Case Against Carbon Capture: 
False Claims and New Pollution

A central false solution is carbon capture and storage 
(CCS), which captures and stores carbon dioxide 
(CO2) from smokestacks or the atmosphere. CCS 
would waste public money to lock in and double 
down on the dirty footprint of fossil fuels through the 
creation of an entirely new dangerous industry. CCS, 
with its many side effects and questionable efficacy, 
distracts us from real climate solutions. 

Findings:
• Despite billions in public support, CCS technology 

has not met deployment expectations. An exami-
nation of CCS projects reveals extensive delays, 
cost overruns and cancellations. Once built, CCS 
is incapable of competing with other energy 
sources without ratepayer or taxpayer bailouts.
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• Based on the application of CCS technologies 
to meet 2018 electricity demands, Food & Water 
Watch found that while renewable energy technol-
ogies can virtually eliminate greenhouse gas emis-
sions from electricity, equipping coal- and natural 
gas-fired plants with CCS would only reduce 
greenhouse gas emissions by 39 percent. Such 
a scenario could support a 35 percent increase 
in coal production and a 13 percent increase in 
natural gas production. CCS is particularly incom-
patible with a transition to natural gas. Replacing 
all coal- and natural gas-fired plants with natural 
gas-fired CCS plants would only reduce emis-
sions by 25 percent and would enable natural gas 
production to increase by 33 percent. 

• If all power plants used CCS, they would burn  
39 percent more natural gas and 43 percent more 
coal, thereby exacerbating air and water pollution 
impacts, which fall disproportionately on lower-
income people and communities of color.

• Large quantities of captured CO2 create a new 
dirty infrastructure footprint. Unproven schemes 
that store CO2 mean more groundwater contami-
nation, air pollution and earthquakes.

Carbon Capture: A Lifeline  
for the Fossil Fuel Industry
CCS is an unproven technology that would prop up 
polluters and boost fossil fuel demand. Widespread 
adoption would be a windfall for fracking and coal 
corporations as CCS-equipped power plants burn 
more fuel to produce the same amount of electricity.5 
Pipeline companies would also benefit from a CCS 
building spree.6 By retrofitting industrial emitters 
with CCS technology, potentially at tax- or ratepayer 
expense, companies would profit from the very 
investments responsible for climate chaos. 

Despite climate concerns, major energy companies 
dump billions into new fossil fuel projects while 
investing less than 1 percent of their capital in 
low-carbon energy.7 CCS is a useful way for fossil 
fuel companies to avoid a write-down of their toxic 
assets. Producers increasingly pitch “clean coal” 
(capturing carbon emissions from burning coal and 
storing them underground), a central part of the 

Trump administration’s coal revival.8 The “magic” of 
CCS is also increasingly embraced by natural gas 
proponents.9 

When CCS is combined with biofuels (like biomass) 
or direct air capture (catching CO2 dispersed in the 
atmosphere), it unlocks dangerous and specula-
tive “negative emissions” narratives — fables that 
delay real climate action with the promise of a super 
technology that would stop the climate crisis.10 
The World Coal Association notes that even the 
Intergovernmental Panel on Climate Change (IPCC) 
supports CCS, particularly in combination with 
biomass (see page 5)11 — a polluting energy such 
as burning wood. Subsequently, some well-funded 
national environmental organizations have uncriti-
cally swallowed the fallacious talking point that CCS 
is both necessary and capable of meeting climate 
demands.12 

And in the face of the industry’s self-induced financial 
crisis,13 CCS soothes investors. These financial inter-
locks could explain the bipartisan effort to jam CCS 
subsidies into federal legislation.14 At the state level, 
industry is beginning to extract tax concessions, 
dangerous liability reforms and pooling reforms that 
would force partial owners to accept carbon storage 
on their property.15

Climate Safety Should Not  
Be Held Hostage by CCS 
Dirty industries say CCS is necessary to meet climate 
goals, dismissing real solutions.16 Technology exists to 
support a transition to 100 percent clean, renewable 
energy backed up by storage and transmission at 
prices lower than current energy costs.17 While some 
contend that renewables require dispatchable gener-
ation to function, a variety of energy storage technol-
ogies can provide cost-effective, reliable, long-term 
backup for a 100 percent renewable energy system.18 
This use of electricity storage has been demonstrated 
at scale and is energetically more efficient than CCS.19 

Experts agree that the cornerstone of climate action 
is decarbonizing the electric grid, which will foster 
the decarbonization of other sectors like transporta-
tion and buildings through electrification.20 The most 
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ambitious forms of CCS only reduce emissions by 
90 percent; but when emissions associated with the 
operation of capture facilities are considered, reduc-
tions fall to near 80 percent.21 When methane emis-
sions from increased production are factored in, CCS 
can only reduce electricity sector emissions by  
39 percent (see Figure 1).22 

The environmental, health and economic impacts 
of fossil-fueled power plants and the extraction that 
these plants drive are not limited to carbon emissions. 
Burning fuels to produce electricity emits dangerous 
air pollution, depletes scarce water resources and 
generates large quantities of toxic waste.23 Adapting 
power plants to capture carbon will simply worsen 
the pollution burdens felt by nearby communities, 
which are disproportionately lower income and 
communities of color.24 

More Pollution for the Same  
Electricity: CCS Supercharges 
Demand for Fossil Fuels 
From capture to injection, CCS requires huge 
amounts of electricity.25 A fraction of the fuel must 
be dedicated to CCS operations, which reduces a 
power plant’s electric output (otherwise referred 
to as the “energy penalty”.)26 To compensate for 
decreased efficiency, generators must expand and 
burn more fossil fuels to produce the same amount of 
electricity.27 This means that when CCS proponents 
point to “CO2 captured” as a metric of success, they 
hide the increase in CO2 emissions from additional 
combustion.28 For example, our nation’s only success-
fully retrofitted CCS power plant built an entirely new 
polluting power plant to run the capture system.29

Based on our analysis, retrofitting natural gas and coal 
plants with CCS while producing the same amount of 
electricity could raise natural gas and coal production 
by 13 percent and 35 percent, respectively.30 If all coal 
and unequipped natural gas plants were replaced 
with natural gas CCS facilities, gas production could 
increase by 33 percent.31 Our analysis also found that 
after accounting for increased methane emissions, 
full deployment of 90 percent-effective CCS would 
reduce power sector emissions by only 39 percent.32 
Switching to an all-gas CCS system would reduce 

emissions by only 25 percent (see Figure 1).33 Due to 
increasesed methane emissions, equipping natural gas 
plants with CCS only reduces greenhouse gas emis-
sions by 18 percent (see Figure 2). 

Figure  1: 2020 Electricity Emissions Profile CCS 
and Conventional (MMT CO2eq)

Figure  2: 2020 Electricity Emissions Technology 
Comparisons (Metric Tons CO2eq/MwH)

SOURCE: Food & Water Watch analysis of EIA data.

SOURCE: Food & Water Watch analysis of EIA data.
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Compounding Environmental  
Impacts from CCS
Power plants and their supply chains are respon-
sible for ongoing, large-scale pollution. They taint 
air and water with dangerous byproducts of fossil 
fuel combustion and harm exposed communities. 
Not only will CCS keep these plants open, but if all 
power plants used CCS, they would burn 39 percent 
more natural gas and 43 percent more coal.34

Water Issues
Power plants need large quantities of low-tempera-
ture water for cooling.35 Thermoelectric power plants 
are one of the largest water users,36 accounting 
for 38 percent of all U.S. freshwater withdrawals in 
2010.37 Power plants not only drain water resources, 
but increased water shortages undermine their long-
term cost effectiveness and reliability.38 From 2007 
to 2008, warmer, drier periods caused U.S. plants 
to cut production, conditions that can send prices 
soaring.39 Researchers found that climate change will 
make extreme shortages (defined as a 90 percent or 
greater reduction in power production) three times 
more likely.40 In addition to preserving an unsustain-
able electricity system, CCS will further increase 
power plant water usage.41 

In addition to water use, coal plants produce poten-
tially hazardous unburned coal residue that can 
contain arsenic, boron, cadmium, chromium, iron, 
copper, lead, manganese, mercury and selenium.42 
CCS would produce a new stream of untreated 
wastewater.43 Scrubbing chemicals emitted 
in low quantities from carbon capture devices 
could contaminate water supplies with probable 
carcinogens.44 

Air Pollution
Power plants release air pollutants like mercury, 
particulate matter, sulfur dioxide (SO2) and nitrogen 
oxides (NOx).45 Their SO2, NOx and particulate matter 
pollution contributes to respiratory health prob-
lems (such as chronic bronchitis, asthma, emphy-
sema and existing heart disease), causes labored 
breathing and reduces life expectancy.46 Particulate 
matter pollution from power plants is responsible for 
15,000 premature deaths annually.47 

Without new scrubbers, additional fuel consumption 
to offset the energy penalty will increase these emis-
sions.48 In addition to emissions associated with fuel 
combustion, emission of carbon separation solvents 
such as monoethanolamine (MEA, a compound 
about as toxic as cyanide) could cause toxic expo-
sure and smog formation.49

Extraction
Extraction of vast quantities of fossil fuels for 
electricity production shifts intense health and 
environmental burdens onto the communities where 
production takes place. Communities plagued 
by fracking experience well-documented, severe 
environmental impacts.50 Black lung impacts an 
increasing proportion of coal miners,51 and mountain-
top mining increases hazardous dust exposure and 
stream pollution with serious potential for human 
health impacts. Researchers have also found higher 
birth defect and respiratory illness rates in areas with 
mountain-top mining, compared to those without.52 

The purported climate benefits of carbon capture 
are offset by the increased emissions from produc-
tion, processing and transportation. Both coal 
mining and natural gas production emit large quanti-
ties of methane, a greenhouse gas that is 86 times 
as potent as CO2 over 20 years and 34 times as 
potent over 100 years.53 Methane emissions add up 
quickly. For natural gas, a loss rate of 2.3 percent of 
methane emissions from the supply chain produces 
the same amount of warming as the CO2 emitted 
from combustion.54 Recent research finds a 4.0 
percent leakage rate for shale (fracked) gas and a 
2.67 percent leak rate for other natural gas.55 
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Negative Emissions: 
Dangerous, Costly, Unproven 
Negative emissions technologies can supposedly 
remove CO2 from the atmosphere. They may also 
produce energy in addition to clawing back CO2. But 
their promise is an excuse to delay urgently needed 
emission reductions. 

Capturing Dirty Bioenergy
Despite the technical barriers to biomass energy and 
its extravagant land-use requirements, the IPCC’s fifth 
assessment report heavily promotes the develop-
ment of dirty bioenergy combined with CCS.68 While 
capture of carbon emissions from conversion of 
biomass to liquid fuel is possible, the resultant biofuel 
emits CO2 when burned.69 

Bioenergy’s supposed carbon neutrality hinges on 
the faulty assumption that growing plants offsets fuel 
combustion.70 While combustion emissions are imme-
diate, it may take years for photosynthesis to reabsorb 
equivalent emission amounts.71 For example, using 
wood instead of coal increases short-term carbon 
emissions.72 U.S. pellet plants (which supply genera-
tors) overwhelmingly source from trees rather than 
from waste residues or byproducts.73

Bioenergy production competes with land uses for 
habitation, conservation and food production.74 
Deriving less than 10 percent of global energy from 
the most efficient biofuel sources would require 
between 11 percent and 14 percent of arable land 
and between 18 percent and 25 percent of current 
human water consumption.75 Heavy use of biofuels 
could require up to 80 percent of current crop-
land.76 To give a sense of the land requirements, 
bioenergy ambitions are limited by the existence of 
natural parks.77 This increased land scarcity would 
have catastrophic impacts on food availability and 
biodiversity.78 

Bioenergy CCS is likely an expensive boondoggle. 
Capturing CO2 adds costs to the already expensive 
biofuel technology.79 U.S. biofuels are also poorly 
suited to CCS because they need substantial energy 
inputs relative to the energy they generate.80 Far from 
being carbon negative, biofuel’s low energy content 

Carbon Capture  
Is Insufficient to Address  
Other Industrial Emissions
While clean electricity can be an antidote to the en-
ergy sector and provide carbon-free heat,  
14 percent of industrial carbon emissions are intrin-
sic to the core chemistry of these industries.56 CCS 
could theoretically be applied to a range of industrial 
practices that emit CO2, such as the production of 
fertilizer, plastic, steel and cement.57 In some cases, 
alternative ways of supplying these end products 
exist, but in others, continued research and develop-
ment is urgently necessary. 

Petrochemicals. Much of the petrochemical indus-
try can be scaled back without resorting to CCS by 
producing fewer unnecessary products, such as dis-
posable single-use plastics.58 (Increased petrochemi-
cal manufacturing is projected to drive a 40 percent 
increase in global plastics production over the next 
decade.59) For necessary plastics (such as medical 
devices or building materials), carbon-free alterna-
tives exist. It is possible to produce plastic and other 
complex hydrocarbons using renewable electric-
ity.60 Companies are already investing in large-scale 
renewable-powered manufacture of hydrogen to 
replace traditional petrochemicals.61 

Cement and Steel. Key construction materials like 
steel and cement need real decarbonization solu-
tions, not false promises. Steel, cement and iron 
have very diluted carbon emission streams, making 
carbon capture challenging.62 While carbon-free 
steel production methods need new research and 
development, some methods show promise. In 
2013, MIT researchers laid the groundwork for an 
affordable, entirely electrified, carbon emission-free 
steel production technique.63 Another method uses 
renewably-produced hydrogen to produce steel 
from iron.64 Carbon capture in the cement industry 
faces unique challenges.65 Technologies capable of 
reducing emissions by more than 64 percent remain 
prototypes.66 Alternative cement production meth-
ods and products are still undergoing research, but 
several carbon-free options appear viable.67
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and high moisture content could make the net CO2 
reduction from capturing biomass worse than fossil-
fueled CCS.81 Additionally, biomass air emissions 
include many of the same pollutants as coal plants, 
with some worse respiratory effects.82

Direct Air Capture 
One of the most speculative carbon capture 
schemes, direct air capture (DAC), involves pulling 
carbon directly out of the atmosphere.83 This process 
is incredibly inefficient because CO2 in ambient air is 
100 to 300 times more diluted than typical smoke-
stack emissions.84 DAC plants are massive and require 
colossal amounts of energy to operate.85 Functional 
DAC is essentially bad energy storage that requires 
a fully renewable grid; if powered with natural gas 
or coal, the process releases more CO2 than it 
captures.86 

Existing pilot-scale DAC 
facilities are surprisingly 
huge, and full-scale plants 
would consume as much 
land as the coal plants 
that they would offset.87 
Contemporary air capture 
also uses as much as 50 
tons of water for every 
ton of CO2 captured.88 
These limitations mean that DAC cannot be feasibly 
deployed at a scale sufficient to meaningfully impact 
atmospheric CO2 levels.89

CCS: Expensive and Ineffectual
Despite billions in government handouts, power plant 
CCS technology remains prohibitively expensive 
and has not lived up to optimistic projections over 
the past two decades.90 In 2009, President Barack 
Obama’s energy secretary, Steven Chu, predicted 
that the United States would have 10 coal-fired plants 
with CCS in service by 2016.91 Between 2005 and 
2012, the U.S. Department of Energy (DOE) spent 
$6.9 billion attempting to demonstrate the feasibility 
of CCS for coal.92

By 2012, 4 of the 10 predicted projects were 
cancelled or mothballed, 5 of which received a 
combined $2 billion in DOE funding.93 Only three 
projects came to fruition.94 One, the Petra Nova 
power plant, captures a tiny fraction of site emissions 
at an astronomical cost.95 Another captures the emis-
sions from a hydrogen production facility.96 The third 
captures easy-to-trap biofuel refining emissions from 
an Archer Daniels Midland (ADM) plant to produce 
fuel that will emit CO2 when burned.97

Between 2014 and 2016, less than 4 percent of the 
planned CCS capacity was deployed.98 Now, after 
support from both the Bush and Obama administra-
tions, cost estimates for power plants with CCS are 
substantially higher than in 2005.99 Despite lackluster 
results, the DOE continues to dump millions on 
speculative carbon capture ventures.100

Based on the current pace 
of demonstration projects, 
a deployment schedule 
that meets climate 
demands is increasingly 
implausible. In 2012, energy 
researchers heralded that 
it was the “last chance for 
CCS.”101 The International 
Energy Agency has steadily 
revised CCS deploy-

ment targets downward as progress has slowed.102 
And despite ongoing public proclamations, large 
utilities and oil companies have abandoned CCS 
without subsidies.103 In an extensive evaluation of 
the divergence between CCS predictions and actual 
deployment, a Global Environmental Change article 
remarked that “CCS hype was driven by the expecta-
tions and commitments of the close-knit community 
of expert-advocates that formed around CCS in the 
early to mid-2000s.”104 

Continued optimism around natural gas CCS is 
remarkable since no commercial-scale gas-fired 
power plants have successfully adopted carbon 
capture, and capturing the diluted CO2 from gas-fired 
power plants may be harder than capturing CO2 from 
coal plants.105 Without scientific breakthroughs, CCS 
may remain perpetually “one decade away.”106 

Based on the current pace 
of demonstration projects, 

a deployment schedule that 
meets climate demands is 
increasingly implausible.
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Utilities Will Bill Ratepayers for CCS 
Utility companies exercise exceptional power over 
consumers, sometimes forcing ratepayers to pay for 
closed power plants.107 Putting CCS on the govern-
ment or ratepayer tab would be an expensive bailout 
for dirty energy producers. If successfully deployed 
by utilities, carbon capture technologies would 
increase generating costs by up to 80 percent.108 

Prior attempts to build CCS have resulted in cata-
strophic cost blowouts. Southern Company’s 
Kemper plant was supposed to cost $2.9 billion, but 
projections ballooned to $7.5 billion, $270 million of 
which came from the DOE.109 After years of delays 
and facing $5 billion in increased costs, Southern 
Company scrapped the CCS portion of the project 
and runs Kemper as a standard gas plant.110

Even the rare CCS success stories are uninspiring. 
“On budget and on time” appears constantly 
in descriptions of the Petra Nova CCS retrofit.111 
Ironically, to meet the energy needs of the carbon 
capture system, Petra Nova had to build a new gas 
plant.112 The combustion emissions from the new gas 
plant (ignoring upstream methane leaks) lower the 
Petra Nova plant’s capture rate from a touted  
90 percent to an actual 66 percent.113 These insignifi-
cant emission reductions incurred a cost of $1 billion,  
$167 million of which came from the DOE — or 
$4,200 per kilowatt of capacity that was retrofitted.114 
(For context, Lazard estimates that the cost of new 
gas capacity is between $700 and $1,300 per kilo-
watt.115) In addition to the DOE grant, Petra Nova sells 
the CO2 to oil drillers for use, but these sales do not 
fully cover the costs of the retrofit.116

The other CCS “success” is the Canadian SaskPower’s 
Boundary Dam, a 110-megawatt coal plant.117 To 
secure project funding, the Canadian government 
had to pick up $300 million of the colossal $1.3 billion 
price tag.118 Although the plant is operating, internal 
documents reveal that it experienced numerous 
operational problems, adding millions to the cost of 
the project and severely limiting the plant’s carbon 
capture capacity.119 SaskPower’s experience with the 
Boundary Dam plant led the corporation to cancel 
plans for larger CCS plants.120 

Deployment Poses  
Insurmountable Challenges
Despite many failures, proponents misguidedly advo-
cate for retrofitting old plants with CCS. Even if the 
technology worked, the buildout would likely be too 
slow to meet climate needs.121 Old power plants tend 
to inefficiently convert fuel to power — which means 
increasing fuel use substantially to run the capture 
system — and the site may not have room.122 Adding 
carbon capture to older plants approaches the cost 
of building power plants from scratch.123 

Even perfect CCS fails to fix the global climate crisis 
because other countries will never have an incentive 
to install it.124 Oddly, the inverse of this argument is 
frequently proffered by CCS proponents who say: “Go 
tell China and India and Indonesia to stop burning 
coal. They’ll say no. Countries are going to continue 
to use coal for electricity.”125 This is precisely the 
problem with CCS. While renewables plus storage, 
if sufficiently developed and demonstrated, is likely 
to compete with and close coal plants on cost alone, 
scrubbing technology will always be more expensive 
than unfiltered coal.126 Only developing cost-compet-
itive technologies can drive voluntary international 
decarbonization and create a stable foundation for 
international climate accords.127

Enhanced Oil Recovery, 
Storage and a Pipeline of  
Infrastructure Problems 
Carbon capture boosters love the concept of using 
CO2 in commercial products because it would create 
a revenue stream for carbon capture while avoiding 
storage.128 Products that use carbon, such as soda 
and canned goods, often emit it back into the atmo-
sphere after use.129 Additionally, the total potential for 
use in products is only a small fraction (less than 10 
percent) of overall carbon emissions.130 Conversion 
of the CO2 to usable products requires energy (and 
attendant emissions), in some cases offsetting the 
purported benefits of using the carbon.131 That is why 
even product-utilization optimists admit that CO2 for 
oil extraction is likely to remain its dominant use in the 
foreseeable future.132 
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CO2 enhanced oil recovery (EOR) is an oil produc-
tion method that uses captured carbon injected into 
mature, low-pressure oil reservoirs to drive remaining 
oil to the surface. EOR operations often mix CO2 with 
hundreds to thousands of tons of dangerous surfac-
tants and nanoparticles underground to increase oil 
output.133 Release and leakage of these surfactants 
poisons wildlife, and while the human health impacts 
of nanoparticle additives are poorly understood, new 
research demonstrates potential liver and kidney 
impacts from exposure.134 

The primary goal of EOR is maximizing oil production, 
not storing carbon.135 Mature oil fields in which EOR 
typically takes place pose unique challenges and are 
less studied than the salt water reservoirs frequently 
examined for storage.136 Maximizing oil production may 
also require injecting CO2 at pressures capable of frac-
turing underground rock formations that contain CO2, 
which would enable rapid leakage.137 In one studied oil 
field, EOR operators were unable to account for 22 to 96 
percent of the CO2 they injected after a short period.138

EOR results in more carbon emissions than it stores. 
A ton of CO2 produces 2 to 3 barrels of oil when 
injected; when burned, that oil emits around 1.2 tons 
of CO2.139 Demand for EOR is insufficient to financially 
support capturing carbon. As of 2018, 140 CO2 EOR 
projects produced approximately 0.35 percent of 
global oil production.140 Even the most (unproven) 
optimistic projections of carbon capture supporters 
admit that EOR could only utilize around six years of 
U.S. CO2 emissions.141 

Unavoidable CO2 Infrastructure Leaks 
CCS infrastructure poses numerous health and 
safety risks because carbon is prone to leakage 
during transport, injection and long-term storage.142 
Concentrated CO2 is denser than air, and exposure to 
concentrations higher than 10 percent is potentially 
fatal.143 The impact of CO2 leaks can be dire. In 1986, 
Lake Nyos in Cameroon released a large bubble of 
CO2 that had accumulated from volcanic activity.144 
The CO2 formed a low-lying cloud, spreading and 
killing 1,746 people (some more than 15 miles away) 
and displacing 4,430 more.145 Captured CO2 may also 
contain dangerous impurities such as volatile organic 
compounds (VOCs), mercaptans, mercury and nitrous 
oxides, and removing them increases the energy 
penalty and other environmental impacts of carbon 
capture.146 Unremoved, some impurities are corrosive, 
increasing the odds of leakage.147

To ensure climate safety, polluters must guarantee 
that carbon can be stored for thousands of years, 
but long-term stable storage of CO2 remains largely 
unproven.148 Existing storage projects have not been 
able to prove that CCS actually works because under-
ground CO2 imaging technology is nascent.149 Despite 
this, pro-CCS state legislators are moving bills that 
would shift the financial liability of long-term storage 
onto the public.150 Storage optimists cite efforts to 
control methane leakage as purported proof that 
CO2 leakage is fixable, despite ongoing substantial 
methane emissions from natural gas production.151

2  
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Well failure during injection or a blowout could 
release large amounts of CO2.152 Injection pressure 
can also reactivate fracture networks or deform the 
sealing layer, allowing leaks.153 CO2 must be injected 
under sufficient pressure to displace existing fluids. In 
small spaces, this can create rapid pressure increases 
that fracture containment layers.154 Earthquakes from 
injection could also rupture storage seals, allowing 
CO2 to leak.155 The increased pressure is compounded 
by chemical reactions between the brine, CO2 and 
minerals that can increase the permeability of the 
sealant layer.156

Natural variations in subsurface geology potentially 
allow CO2 to rise to the surface unless trapped by 
sealing layers of rock.157 For example, CO2 can flow 
through water channels that may be connected to the 
surface.158 Slower leakage along fractures and unde-
tected faults is also possible.159 Dependent on rock 
permeability, as much as 10 percent of stored CO2 

may leak over 30 years.160 These unknown factors are 
amplified by natural disasters such as earthquakes.161

Since many storage locations are in and around fossil 
fuel reservoirs, abandoned oil and gas wellbores 
provide a pathway for CO2 leaking to the surface.162 Any 
old, unsealed or defectively-sealed wells are essentially 
pipelines to the surface.163 CO2 can also slowly escape 
along well linings and has been shown to corrode 
materials used in well casings and seals.164 Undetected 
leaks can completely undermine a storage operation’s 
efficacy.165 Optimists reference similarities to natural gas 
storage, ignoring the disastrous Aliso Canyon blowout 
that spewed methane for months.166 Storage leaks could 
also contaminate groundwater and soil.167

CO2 Pipelines, Like Natural Gas  
Pipelines, Would Be Faulty
A buildout of CCS infrastructure could propel pipeline 
companies into a pipeline building bonanza. Like 
natural gas pipelines, CO2 leaks are likely to occur in 
every stage of the CCS network — from EOR wells 
to pipelines to compressor stations to power plants 
and their storage facilities. Moreover, CO2 pipeline 
accidents could release large quantities of dense gas, 
which may temporarily accumulate in low-lying areas 
as incredibly dangerous ground-level CO2 clouds.168 

Much like natural gas, CO2 pipelines require 
compressor stations to maintain pressure.169 These 
facilities are integral to moving content through 
pipeline networks, but emit air pollutants like NOx, 
fine particulate matter, carbon monoxide, benzene 
and formaldehyde (some of which are associated 
with an increase in ambient ozone).170 In Pennsylvania, 
noisy compressor stations are the leading cause of air 
pollution from oil and gas production.171

CO2 Storage and  
Injection Is Shaky at Best
Another caveat to CCS is inadequate space for safe 
underground carbon storage. Pro-CCS studies tend 
to evaluate only abstract CO2 storage capacity (such 
as global and national capacities) without regard to 
practical limitations (such as transportation of CO2 
and conflicting land uses).172 In commercial settings, 
suitable CO2 storage reservoirs may be far from 
carbon-emitting sources or functionally limited due to 
injection rates (the reservoir can only accept CO2 at 
a lower rate).173 Injecting CO2 at rates above the pres-
sure tolerance of a specific reservoir can crack seals, 
activate faults and cause earthquakes and leaks.174 
Sequestration also fails to provide a global answer to 
the climate crisis since some countries do not have 
rocks suitable for CO2 storage.175

Extensive research has also linked high-volume injec-
tion (for wastewater disposal and natural gas storage) 
to earthquakes. Carbon sequestration plans would 
inject CO2 at volumes higher than activities already 
linked to seismicity.176 Not only is CO2 injection very 
similar to wastewater injection, but reducing pres-
sure to inject CO2 may require extracting wastewater 
from the reservoir and reinjecting elsewhere.177 
Extensive research links fluid injection and disposal to 
earthquakes.178

Research links injection of CO2 to seismecity.179 Events 
with magnitude as high as 4.4 have been recorded 
at CO2 injection sites, which is near levels that can 
damage buildings and infrastructure and contaminate 
drinking water.180 These seismic risks will increase if 
CCS is commercialized and volumes of injected CO2 
grow beyond what occurs at current demonstration 
projects.181 



The Case Against Carbon Capture: False Claims and New Pollution

foodandwaterwatch.org 10

Conclusion
Despite the proven viability of every technological 
component necessary for a rapid transition to 100 
percent clean, renewable energy,182 embedded 
interests continue to promote carbon capture and 
storage as a solution to climate change. Successful 
deployment of this technology would result in large 
increases in pollution associated with the extrac-
tion, transportation and combustion of fossil fuels, 
burdens that are borne disproportionately by the least 
well-off in society. At the same time, CCS would fail to 
meaningfully reduce emissions to stave off the worst 
effects of climate chaos. 

Carbon capture and storage relies on unproven and 
dangerous technologies that cannot survive without 
government support. Continued subsidies for this 
failed technology only serve as an excuse to defer 
meaningful climate action. A reckless push for CCS 
would sacrifice important regulatory guardrails 
and expose the public to increased water pollution, 
induced earthquakes and potentially catastrophic 
releases of CO2. 

Methodology
Food & Water Watch used the electricity emissions 
model from our report Fracking’s Bridge to Climate 
Chaos: Exposing the Fossil Fuel Industry’s Deadly 
Spin to estimate the impact of CCS on emissions 
and fuel use (assuming the technology was deployed 
on the 2020 fleet of natural gas- and coal-fired 
power plants). The model was updated to include 
uncounted leakage from the portion of natural gas 
fuel lost between production and delivery at electric 
power plants. Tonnes of methane were converted to 
tonnes of CO2 equivalents using the 20 year global 
warming potential of methane. The model uses data 
from the Reference Case projections of the Energy 
Information Administration’s Annual Energy Outlook 
2020 released January 2020.

Food & Water Watch used an energy penalty of 30 
percent for coal based on the retrofit at Boundary 
Dam and a review of estimated penalties for retrofits 
found in the literature.183 Due to the lack of scale 
demonstrations of CCS at natural gas-fired power 
plants, our analysis used a high estimate (28 percent) 
for the energy penalty of natural gas plants.184 Our 
results are likely conservative as energy penalty 
calculations do not always include the energy use 
associated with pipeline transport, pressurization 
and injection.185 Our analysis assumed that reduced 
output was met by a corresponding increase in 
output from the same type of plant, also equipped 
with carbon capture (for example, a 30 percent 
reduction in output from a CCS equipped coal plant 
would be met with a corresponding increase in 
generation from a CCS-equipped coal plant).
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