

Written Testimony for Nicholas Patrick VP of The Maryland Healthy Alternatives Association Owner of Embrace CBD Wellness Centers 410-279-1222

Honorable Chair Wilson and Members of the Economic Matters Committee,

My name is Nicholas Patrick and I am the Vice President of the Maryland Healthy Alternatives Association which works to protect the public's access to safe alternatives to prescription medications and advocates for the hemp industry in Maryland. I am also a minority business owner of Embrace CBD Wellness Centers which has 3 retail locations in Anne Arundel and Howard County Maryland.

I write to you today as what many would define as a "dreamer", I was brought to this country as a baby, and for the majority of my life, I lived in the shadows as an undocumented immigrant. I couldn't legally work, attend college, or even drive a car for 25 years until I was granted a green card at 26 years old. I know what it's like to feel marginalized and forgotten but I always dreamed of owning my own business but I'm more than just a dreamer, I'm a doer. I worked extremely hard to build my business which supports my wife, my son, and my mother who recently lost her husband to covid. I cannot sit idly by while it is destroyed because of a lack of regulation and the greed driven overreach from the cannabis establishment. That is why we started the MHAA to protect our industry from such a threat and to work with the legislature to address the lack of a regulatory landscape by working to craft common sense regulations to protect public safety and the hemp industry participants.

I have deep concerns about the proposed language in the Cannabis Reform Act, HB0556, that aims to lower the acceptable Delta-9-Tetrahydrocannabinol concentration below the federal threshold of 0.3% on a dry weight basis (§ 36-101 (C)(1); Page 18 line 19), and to ban "cannabinoid products not derived from naturally occurring biologically active chemical constituents" (§ 36-1103(2) (B); Page 70, lines 8-10), as well as the efforts to place a cap on

THC at 0.5mg per serving and 2.5mg per package for those without a recreational cannabis license. (§ 36-1103 (A)(1); Page 69, lines 23-27).

The Maryland hemp industry is a major industry in Maryland that contributes large amounts of tax dollars to the state from our product sales that total over \$300,000,000. We have also attached an economic impact report as part of our written testimony that further outlines the sheer size of our industry and the potential loss of revenue to the state that this legislation would cause without the proposed amendments.

The low barrier to entry into the hemp industry attracted many different types of entrepreneurs from all backgrounds, races, and genders creating a true climate of social equity in this "sister industry" to cannabis. Through our cursory research we were able to determine that 30% of all hemp specialty stores in the state identify as Black Owned and 25% of all hemp production licenses were issued to women. This is one of the most diverse communities of business owners that stands to be eradicated by this proposed legislation due to the wholesale ban on Delta 8 and the proposed THC caps. Why destroy social equity in an already existing industry with low barriers to entry where the diversity took shape naturally while trying to create it in another industry with much higher barriers to entry? This seems wildly unnecessary and will only hurt the small business community in our state and further discourage minority participants from owning their own businesses. If people fail in business due to bad business practices, that is something that can happen to anyone, but if people have their businesses robbed from them by overregulation or misguided policy, that can lead to utter discouragement and cause businesses to simply leave the "Free State" of Maryland.

The devastation to the small and minority owned business in the Maryland hemp industry that lowering the acceptable THC concentration in hemp products will cause will be tragic. It would cause hundreds of businesses to close and cause countless people to lose their jobs. This language as written would immediately render nearly all Full Spectrum CBD products illegal as all of them contain more than 2.5mg per package as evidenced by the certificates of analysis attached to this testimony. These COAs are representative of nearly ALL Full Spectrum CBD products that can currently be purchased in CBD specialty stores like ours as well as pharmacies, grocery stores, and many hundreds of retail establishments throughout the state. This arbitrary number of 2.5mg does nothing but destroy current hemp businesses in our state and does not serve in any way to protect public safety or achieve any relevant end. It simply allows for the cannabis establishment to encroach on the rights of legal hemp businesses to further consolidate their industry as well as circumnavigate clearly written federal law. THC limits like these ought to be based in science, however this language has no scientific basis whatsoever but it only mirrors the talking points from the cannabis establishment that we in the hemp industry have heard for years which led to the formation of the MHAA.

We in the hemp industry have always been protected by federal law but now it seems that the State of Maryland wants to criminalize a long standing, federally legal industry while legalizing a

federally illegal industry. Many businesses in our state have been growing hemp for CBD, processing hemp for CBD, manufacturing CBD products, and selling CBD products at retail for years now and they are all in danger of losing a key element of their businesses over arbitrary THC caps that seem to serve no relevant purpose. The federal standard for THC limits for hemp products has always been 0.3% Delta 9 THC on a dry weight basis. We urge the legislature to amend (§ 36-1103 (A)(1); Page 69, lines 23-27) to reflect the federal standard of 0.3% on a dry weight basis and not to change the definition of hemp in Maryland to serve the greed of the cannabis establishment. Doing so would limit access to underserved communities, government employees, veterans, and everyone who relies on these products to improve the quality of their daily lives and force them to conduct business inside of a marijuana establishment that many of them likely never planned on entering. This would just simply be bad policy. Why would we criminalize Full Spectrum CBD products being sold even in places like Whole Foods, spas, and even acupuncturists offices while empowering the high potency THC products that will be available in Adult Use Cannabis dispensaries? That doesn't make any sense, and so I'm sure this was not the intent of the legislature. We urge the committee to make the amendments outlined in our testimony and protect the small and minority owned businesses in Maryland.

Next I will address the further destruction of the hemp industry that would serve as the "nail in the coffin" for small and minority owned hemp businesses which is outlined in (§ 36-1103(2) (B); Page 70, lines 8-10) which refers to cannabinoid products not derived from naturally occurring biologically active chemical constituents. This language is very confusing and it's difficult to determine the intent behind it. However in our many meetings with legislators, including members of this committee we were told that this language takes aim at federally lawful refined hemp cannabinoid products like Delta 8, Delta 10, and HHC. This has been one of the main goals of the cannabis establishment for years now. Lies and misinformation have spread like wildfire from lobbyists for large cannabis companies that have portrayed these products to be some sort of boogeyman which they most certainly are not. We have been the victims of intentional misinformation for far too long and it is time for it to stop. We even heard that a lobbyist in Maryland had said that delta 8 products contain harmful fillers like lye. This is totally untrue, and frankly it's ridiculous.

We understand that like any industry there are bad actors in hemp and we want to weed them out and are willing to work with the state to create a regulatory framework for these products. We have also attached to our testimony a full in-depth report on Delta 8 for the committee to review which further outlines the TRUTH about these products. Before last legislative session these products were not age-gated and were being sold irresponsibly in places like gas stations and convenience stores where minors had unfettered access to them and we were excited to work with the legislature to age gate these products while we worked on a common sense regulatory framework.

In 2022 Senator Feldman and Delegate Pena-Melnyk created a study group led by the MMCC to conduct a comprehensive study on these products that we were, by law, meant to be an active

part of. However, as expected, this study from its inception was highly weighted against the interests of the hemp industry with only 27% of participants being from the hemp industry and the other 73% having a role in the cannabis industry. Throughout the study the 2 members from our association dispelled misinformation, cited facts corroborated by the experts selected to contribute to the study, and worked with the MMCC and the other interested parties (in the limited capacity that we could) to come up with recommendations on how to properly regulate these products. Much to our surprise we agreed with most of the recommendations and were excited to finally have the regulation that our industry so desperately needed to bring legitimacy to these products and promote public safety while protecting the hemp industry's ability to participate in the free market. However now it seems that without ANY consultation from the industry participants who created these products we are now facing a total ban on the products that make up more than 70% of all hemp related sales in the state.

We understand the concerns about public safety especially when it comes to children getting ahold of Delta 8 products. That is why our plan for regulation that we have worked so hard to create is so crucial to this conversation. No, Delta 8 does not contain lye, no it does not contain harmful chemicals, no it does not cause children to die, if the product is tested by a DEA registered, ISO Certified lab and the report shows that it's clean, then it's safe for use for adults 21 and older. These products have a 40% less potent psychotropic effect than Delta 9 products and are purchased specifically for that reason. I urge you to please read our full report on Delta 8 and other non-Delta 9 THC isomers included in testimony from the MHAA and the Maryland Hemp Coalition.

Most people who purchase these Refined Hemp Cannabinoid products are buying them specifically because they have tremendous therapeutic benefits and do not create the long lasting intense "high" produced by recreational cannabis. Our industry serves a different customer. In addition, the prices of these products are much less expensive than what is currently offered by the medical marijuana dispensaries and allow those who are economically disadvantaged to be able to purchase products that improve their daily lives at a fraction of the cost. We are a resource to many underserved communities.

The idea that a public health emergency will happen if Delta 8 is allowed to remain on the market is simply not true. As Maryland opens up its Adult Use Market the potential for a child to get a hold of a bag of Delta 9 edibles from a dispensary will drastically increase and we as a state assume the same risk as if it were a delta 8 product except that delta 8 is a less potent, naturally occurring cannabinoid that delta 9. The solution is simple and is already thoroughly outlined in HB1204. Regulate Delta 8. Enforce testing requirements, labeling and packaging requirements, and create a simple and easy to access addition to a trader's license that allows for the sale of Refined Hemp Cannabinoid Products so that the businesses offering these products can be tracked by the state for purposes of enforcement and establish penalties for breaking the rules. All of this is outlined in our plan.

Please consider the many people from every conceivable background who have built very successful businesses around these products and do not destroy their livelihoods without giving them a chance at finally being able to operate in a well-regulated hemp industry. We have the resources to do it, we have the plan in place, all we need to do is execute it. We are afraid that our very existence is threatened because of a lack of regulation that has allowed bad actors to sell untested substandard products. The answer is not to punish the good guys who tried their best to do the right things in an unregulated market. The answer is regulation, and we have a plan for it that is already filed in HB1204 which models recommendations from the MMCC study on these very products.

We are not opposed to regulation. In fact, we welcome it. Not many industries ask the state for more regulation, but the hemp industry is begging for it. We know we need it but we cannot accept the destruction of our business, which is protected by federal law which will open the state up to unnecessary litigation. The exclusion of all tetrahydrocannabinols in hemp from the CSA, by the actions of the 2018 Farm Bill, should eliminate any question of the legality surrounding these hemp-derived cannabinoids and products (delta-8, delta-10, and other THC isomers.) Unfortunately, the adjacent medical and adult-use cannabis industry, with conflicting economic interests, continues to spread misinformation about these products as they always have.

There is nothing within the 2018 Farm Bill that prohibits deriving Delta 8 or other THC isomers from hemp and enhancing the products with the compounds. Supporting this is a panel of the U.S. Court of Appeals for the Ninth Circuit who stated in March 2022 in a 3-0 ruling, "this Court will not substitute its own policy judgment for that of Congress." We believe the subsequent regulatory actions should reflect the same. There is no need to have this wind up in a legal battle when we can work together to protect the public and the industry.

As the MHAA it is our duty to protect the public's access to these products. These products act as a middle ground between CBD and Cannabis and our customers purchase it specifically because it's less potent. They don't want to be forced to shop in a dispensary and many of our members in this industry may never have even planned to enter the Adult Use Market and may not even have the resources required to do so. Hemp is here to stay, and for good reason. The cannabis industry has become obsessed with constantly increasing the potency of their products and this legislation leaves no room for those consumers who cannot handle the intense "high" produced by these products. That is who the hemp industry currently serves. We can have Beer and Wine as well as Jack Daniels and Bacardi 151. There is a real need for these products and the consumers in Maryland want them as evidenced by the letters written by consumers attached to this testimony.

My wife and I started Embrace CBD Wellness Centers with our life savings of only \$8000 and today after 4 years of work our business has grown to three locations and over \$1.3 million in

annual sales. We are proud to offer science backed educational resources and quality controlled 3rd party lab tested products including Delta 8. We are the good guys, companies like us do exist and they are represented by our membership. We need more of them, you do not need to place us all out of business. We instead encourage a collaborative effort between the state and the industry to properly regulate these products which would be the best solution that serves everyone well.

We do not have to crush small businesses to achieve the goals of this \$2 billion marijuana industry. We can have both a successful cannabis industry and protect our small hemp businesses, and this is only possible through common sense regulation that protects both the public safety and the businesses in the hemp industry and there is already a plan in place to do it. Let's collaborate on ways to achieve the most equitable cannabis industry possible which encompasses all parts of the plant.

I urge you to support the safe and regulated sale of hemp products in Maryland, and to stand with us in protecting small businesses and the American Dream. The hemp industry in Maryland requests that § 36-1103. 2(B) "A PERSON MAY NOT SELL OR DISTRIBUTE A CANNABINOID PRODUCT THAT IS NOT DERIVED FROM NATURALLY OCCURRING BIOLOGICALLY ACTIVE CHEMICAL CONSTITUENTS" be struck and regulatory language from HB1204 be amended into the appropriate section of this legislation.

Thank you for your consideration,

Nicholas Patrick Maryland Healthy Alternatives Association

Proposed Amendments to HB556

Page 18, line 19: (C) (1) A DELTA-9-TETRAHYDROCANNABINOL CONCENTRATION GREATER THAN 1% ON A DRY WEIGHT BASIS.

Page 69, lines 24: (A) (1) [0.5 MILLIGRAMS OF TETRAHYDROCANNABINOL PER SERVING OR 2.5 MILLIGRAMS OF TETRAHYDROCANNABINOL] 0.3% DELTA-9-TETRAHYDROCANNABINOL ON A DRY WEIGHT BASIS UNLESS THE PERSON IS LICENSED

Page 70, Line 8, STRIKE : [(B) A PERSON MAY NOT SELL OR DISTRIBUTE A CANNABINOID PRODUCT THAT IS NOT DERIVED FROM NATURALLY OCCURRING BIOLOGICALLY ACTIVE CHEMICAL CONSTITUENTS.] Below are letters from consumers of these products. I selected a few out of the dozens we received when our customers heard about this legislation.

Dear Chairman Wilson and Committee Members,

My name is Jennifer Fox, I live in Glen Burnie, MD and I am writing to you as a consumer of CBD and hemp-derived THC products.

As someone who has a federal security clearance for employment, I am only able to utilize CBD products to treat my panic and anxiety, as THC is still federally illegal. Until and unless the federal government gets on board with the legalization of marijuana, you risk alienating what I suspect is a large consumer base of CBD products, by restricting access to these products to those who rely on them, and cannot or are uncomfortable with the idea of having to work with recreational dispensaries. You're talking about people who work to support this country, who are trying to better their health and balance that with the fear of losing their jobs. Asking them to visit a dispensary rather than a local shop like Embrace CBD is like asking them to choose their jobs over their health, which should go without saying is an unfair choice.

Many people, like myself, rely on these products for their daily health and wellness needs, and we should not be forced to go to a recreational dispensary in order to access them. The current buying experience is simple and straightforward, and I appreciate the convenience of being able to purchase these products from a trusted source.

After struggling for years to treat my anxiety with prescription medication that had side effects I was not willing to compromise on, the great people at Embrace CBD have quite literally transformed my life. After much hesitation, because of the stigma surrounding the use of CBD and hemp-derived THC products as a federal government employee, and because I had reached a breaking point in dealing with my panic and anxiety, I finally sought the assistance of the folks at Embrace CBD. Not only are they professional and easy to work with as a small business, but they are knowledgeable and very much respect my reservations in trying CBD products because of my employment. Individualized treatment I somehow doubt I would receive at a recreational dispensary, as I would not be the general audience they cater to. They were able to make recommendations based on my needs and restrictions, knowing I am regularly drug tested for work. When I say their wisdom and products transformed my life, I am not exaggerating. After just the first week using the recommended CBD products, I was able to sleep through the night consistently for the first time in years. I am able to go out in public places or with large crowds, drive, and engage in the high-stress of my work without constant panic and fear. I am a better person, better wife, mother, and daughter with the use of these CBD products in my everyday life.

I strongly urge you to protect our access to these products and the existing businesses that sell them. By doing so, you will be ensuring that consumers like myself continue to have access to the products that we need and rely on for our health and well-being.

Thank you for your time and consideration. Sincerely,

Jennifer Fox

Dear Chairman Wilson and Committee Members:

My name is Leslie Friedman and I live in Glen Burnie, Maryland. I am writing to you today as a consumer of CBD and Hemp- derived THC products that are less potent than Marijuana. I strongly urge you to protect my access to these products without having to purchase them from recreational dispensaries.

I am a true believer that it should be a person's right to choose what works for them hence, the reason I voted to legalize Marijuana in the State of MD. My husband had a Medical Marijuana card in the State of MD to be able to purchase, and consume THC products for pain relief. While the product might have worked he did not like the paranoid feelings that were associated with THC products.

Therefore, he tried CBD and hemp-derived THC products and found they provided him with pain relief he was seeking without the paranoid reactions.

I choose to use these products for their many health and wellness benefits, and I appreciate the ease and affordability of purchasing them from existing businesses that already sell quality, lab-tested products.

By closing these businesses you will be forcing the consumer of CBD and hemp-derived products to search for companies located outside of MD. In addition to losing that revenue you are closing one company to open another, it doesn't make sense.

I strongly urge you to protect my access to the products I need and rely on for my personal health and well-being.

Thank you for your time and consideration.

Dear Chairman Wilson and Committee Members,

My name is Mindy Rector. I live in Chesapeake Beach and I am writing to you as a consumer of CBD and hemp-derived THC products that are less potent than marijuana. I strongly urge you to protect my access to these products without having to purchase them from recreational dispensaries.

I choose to use these products for their many health and wellness benefits, and I appreciate the ease and affordability of purchasing them from existing businesses that already sell quality, lab-tested products. The prices are significantly lower than those found at cannabis dispensaries, and the potency is also lower, making these products more accessible and appealing to a wider range of consumers like myself.

Many people, like myself, rely on these products for their daily health and wellness needs, and we should not be forced to go to a recreational dispensary in order to access them. The current buying experience is simple and straightforward, and I appreciate the convenience of being able to purchase these products from a trusted source.

I want to be able to purchase CBD/Hemp products from Embrace CBD Wellness Centers. I trust them and their products. I have been purchasing products from them for over a year to help me with my anxiety. I drive an hour each way because I don't want to go anywhere else. I strongly urge you to protect our access to these products and the existing businesses that sell them. By doing so, you will be ensuring that consumers like myself continue to have access to the products that we need and rely on for our health and well-being.

Thank you for your time and consideration. Sincerely, Mindy Rector

Dear Chairman Wilson and Committee Members,

My name is Joyce Hamcky, I live in Glen Burnie and I am writing to you as a consumer of CBD and hemp-derived THC products.

Last year I needed a total hip replacement, I was in constant excruciating pain. I needed to lose 40 lbs. before the doctors would do the surgery. Someone told me about the CBD oil to help relieve some of the excruciating pain. I purchased and started taking the CBD oil, every day, multiple times a day. It didn't take away all the pain, but it did definitely help with the excruciating part of the pain. I was able to cope and focus on losing the 40 lbs. I needed to lose. It also helped me to be able to sleep at night and I believe it also helped curb my appetite, so I was able to lose the 40 lbs. I needed to lose. I had the total hip replacement on November 2022 and am still using the CBD oil to help me to be able to exercise and be able to do my physical therapy to get my body back to where it was over a year ago. One of the best reasons for taking the CBD, I have not had to rely on prescription pain drugs to get me thru all the pain, prior to the surgery and currently with all the rehab at physical therapy. I don't know how successful I would have been with functioning with all the pain I was in, being able to sleep, losing the weight and

getting thru the entire process. Also, would not have been able to afford using the CBD oil if I had to purchase it at the recreational dispensaries which are more expensive.

The people at Embrace CBD Wellness Centers were very helpful with explaining what my options were, what to try, how much to take, the specials they have every day which helped me to be able to afford to use their products.

Thank you for your time and consideration.

Sincerely,

Joyce Hamcky

Dear Chairman Wilson and Committee Members,

I am writing to you as a concerned friend of a resident of Frederick, who is a consumer of CBD and hemp-derived THC products. I have been informed of the issues they are facing and strongly urge you to protect their access to these products without having to purchase them from recreational dispensaries.

As an outsider, I understand that this may not directly affect me. However, I strongly believe that every consumer should have access to products that can help them maintain their health and well-being. I have witnessed the positive effects that these products have had on my friend's life, and I believe it is important to protect their access to them.

My friend has expressed their appreciation for the ease and affordability of purchasing these products from existing businesses that already sell quality, lab-tested products. They have informed me that the prices are significantly lower than those found at cannabis dispensaries, and the potency is also lower, making these products more accessible and appealing to a wider range of consumers.

I understand that many people, like my friend, rely on these products for their daily health and wellness needs. It is crucial that they should not be forced to go to a recreational dispensary in order to access them. The current buying experience is simple and straightforward, and I believe it is essential to maintain this convenience for consumers like my friend.

I strongly urge you to protect their access to these products and the existing businesses that sell them. By doing so, you will be ensuring that consumers continue to have access to the products that they need and rely on for their health and well-being.

Thank you for your time and consideration.

Sincerely, Noah Langdon.

Dear Chairman Wilson and Committee Members,

My name is Casey. I live in Pasadena and I am writing to you as a consumer of CBD and hemp-derived THC products that are less potent than marijuana. I strongly urge you to protect my access to these products without having to purchase them from recreational dispensaries.

I suffer from osteoarthritis throughout my body and choose to use these products as an alternative to prescription pain relief. I appreciate the ease and affordability of purchasing them from existing businesses that I trust and with whom I have a rapport. I know my wellness center already sells quality, lab-tested products. The prices are significantly lower than those found at cannabis dispensaries and, more importantly to me, the potency is lower.

I strongly urge you to protect our access to these products and the existing businesses that sell them. By doing so, you will be ensuring that consumers like myself continue to have access to the products that we need and rely on for our health and well-being.

Thank you for your time and consideration. Sincerely, Casey Ventola

Dear Chairman Wilson and Committee Members,

My name is Renae Reeves. I live in Glen Burnie, MD and I am writing to you as a consumer of CBD and hemp-derived THC products.

I have my state approved medical cannabis card but after many failed attempts to find a more stable dosage for me once realizing the dispensaries THC potency was just too strong, I decided to switch to CBD and hemp-derived products and have not been disappointed. Now I am able to comfortably purchase my products knowing I'm not going to have to play pharmacist or guinea pig.

I have also purchased CBD for my dog who has shown significant improvement with his inflammation of his joints but more importantly his seizure reduction. One less thing in life I have to worry about.

I strongly urge you to protect our access to these products and the existing businesses that sell them. By doing so, you will be ensuring that consumers like myself continue to have access to the products that we need and rely on for our health and well-being.

Thank you for your time and consideration. Sincerely, Renae D. Reeves

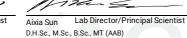
In the following pages you will see different Certificates of Analysis that show the MGs per serving, MGs per package, and the <0.3% Delta 9 THC Concentration on a dry weight basis. Without the proposed amendments every single product like this becomes criminalized.

ACCS LABORATORY 721 Cortaro Dr. Sun City Center, FL 33573 www.acslabcannabis.com		CERTIFIED		Lotion Sample Matrix: CBD/HEMP Derivative Products (External Use)	
DEA No. RA0571996 FL License # CMTL-0003 CLIA No. 10D1094068	Certifi	cate of Ar Compliance Test	nalysis		
CLOUD CO. FARMS PO BOX 681 ALAMOSA, CO 81101	Batch # CCF-FSL3000-001 Batch Date: 2022-12-01 Extracted From: CCF-07182022	Test Reg S	Method: MSP 7.3.1 tate: Florida		
Lab Note: Merged Potency With Full Panel Order # CLO221201-010001 Order Date: 2022-12-01 Sample # AADU670	Sampling Date: 2022-12-05 Lab Batch Date: 2022-12-05 Completion Date: 2022-12-12		ss Weight: 137.500 g t: 108.032 g	Number of Units: 1 Net Weight per Unit: 11	3294.000 mg
CBL LOTION CBL LOTION CBL LOTION METHOD METHOD METHOD METHOD METHOD METHOD METHOD	Potency Tested	Pesticides Passed Water Activity Tested	Heavy Metals Passed	Mycotoxins Passed Pathogenic Passed	Residual Solvents Passed Microbiology Petrifilm Passed
Product mage		Tested	🗳 Poten	cv Summarv	

1	Potency 10				Tested	Potency Summary			
	Specimen Weight: 8	35.830 mg			SOP13.001 (LCUV)	Total Active THC 0.083% 98.184mg			Active CBD 2649.786mg
Analyte	Dilution (1:n)	LOD (%)	LOQ (%)	Result (mg/g)	(%)				
CBD	100.000	5.40E-5	0.0015	22.4000	2.2400		I CBG		otal CBN
Delta-9 THC	100.000	1.30E-5	0.0015	0.8300	0.0830	0.049%	57.964mg	0.016%	18.927mg
CBG	100.000	2.48E-4	0.0015	0.4900	0.0490	Other Cannabinoids		Total (Cannabinoids
CBDV	100.000	6.50E-5	0.0015	0.3400	0.0340				2887.557mg
CBC	10.000	1.80E-5	0.0015	0.1900	0.0190	0.053%	62.696mg	2.441%	2887.557119
CBN	100.000	1.40E-5	0.0015	0.1600	0.0160	Summary Results deter	rmined from two distinc	t Potency Tests - P	otency 10
CBDA	100.000	1.00E-5	0.0015	<loq< td=""><td><loq< td=""><td>,</td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td>,</td><td></td><td></td><td></td></loq<>	,			
CBGA	100.000	8.00E-5	0.0015	<loq< td=""><td><loq< td=""><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td><td></td></loq<>				
THCA-A	100.000	3.20E-5	0.0015	<loq< td=""><td><loq< td=""><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td><td></td></loq<>				
THCV	100.000	7.00E-6	0.0015	<loq< td=""><td><loq< td=""><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td><td></td></loq<>				

Residual Solvents - FL

Л


Ph.D., DABT

Spec	imen We	Weight: 314.900 mg				2	CO							(qPCR)	
Dilution Factor: 5000.	000									Specimen Weight: 25.4	412 g				
Analyte	LOD (ppm)	LOQ (ppm)	Action Level (ppm)	Result (ppm)	Analyte	LOD (ppm)	LOQ (ppm)	Action Level (ppm)	Result (ppm)	Dilution Factor: 1.000					
1,1-Dichloroethene	0.0094	0.132	8	<loq< td=""><td>Heptane</td><td>0.0013</td><td>8</td><td>500</td><td><loq< td=""><td></td><td>Action</td><td>Recult</td><td>Analyte</td><td>Action Level</td><td>Result</td></loq<></td></loq<>	Heptane	0.0013	8	500	<loq< td=""><td></td><td>Action</td><td>Recult</td><td>Analyte</td><td>Action Level</td><td>Result</td></loq<>		Action	Recult	Analyte	Action Level	Result
1,2-Dichloroethane	0.0003	0.032	2	<loq< td=""><td>Isopropyl alcohol</td><td>0.0048</td><td>8</td><td>500</td><td>48.139</td><td>Analyte</td><td>Level</td><td>(cfu/g)</td><td></td><td>(cfu/g)</td><td>(cfu/g)</td></loq<>	Isopropyl alcohol	0.0048	8	500	48.139	Analyte	Level	(cfu/g)		(cfu/g)	(cfu/g)
Acetonitrile	0.06	0.96	60	<loq< td=""><td>Methylene chloride</td><td>0.0029</td><td>2</td><td>125</td><td><loq< td=""><td>A</td><td>(cfu/g)</td><td></td><td>STEC</td><td>25</td><td>Absence in 25g</td></loq<></td></loq<>	Methylene chloride	0.0029	2	125	<loq< td=""><td>A</td><td>(cfu/g)</td><td></td><td>STEC</td><td>25</td><td>Absence in 25g</td></loq<>	A	(cfu/g)		STEC	25	Absence in 25g
Butanes	0.4167	13.32	2000	<loq< td=""><td>Propane</td><td>0.031</td><td>26.668</td><td>2100</td><td><loq< td=""><td>Aspergillus (Flavus, Fumigatus, Niger, Terreus)</td><td>1</td><td>Absence in 1g</td><td></td><td></td><td></td></loq<></td></loq<>	Propane	0.031	26.668	2100	<loq< td=""><td>Aspergillus (Flavus, Fumigatus, Niger, Terreus)</td><td>1</td><td>Absence in 1g</td><td></td><td></td><td></td></loq<>	Aspergillus (Flavus, Fumigatus, Niger, Terreus)	1	Absence in 1g			
Ethyl Acetate	0.0012	6.4	400	<loq< td=""><td>Total Xylenes</td><td>0.0001</td><td>7.2</td><td>150</td><td><loq< td=""><td></td><td></td><td>Absence</td><td></td><td></td><td></td></loq<></td></loq<>	Total Xylenes	0.0001	7.2	150	<loq< td=""><td></td><td></td><td>Absence</td><td></td><td></td><td></td></loq<>			Absence			
Ethyl Ether	0.0049	8	500	<loq< td=""><td>Trichloroethylene</td><td>0.0014</td><td>0.4</td><td>25</td><td><loq< td=""><td>Salmonella</td><td>25</td><td>in 25g</td><td></td><td></td><td></td></loq<></td></loq<>	Trichloroethylene	0.0014	0.4	25	<loq< td=""><td>Salmonella</td><td>25</td><td>in 25g</td><td></td><td></td><td></td></loq<>	Salmonella	25	in 25g			
Ethylene Oxide	0.0038	0.32	5	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>											

SOP13.039 (GCMS)

Passed 🕸

Gr a Lab Toxicologist Xueli Gao

Definitions and Abbreviations used in this report: Total Active CBD = CBD + (CBD-A * 0.877), *Total CBDV = CBDV + (CBDVA * 0.87), Total Active THC = THCA-A * 0.877 + Delta 9 THC, Total THCV = THCV + (THCVA * 0.87), CBG Total = (CBGA * 0.877) + CBG, CBN Total = (CBNA * 0.877) + CBN, Total CBC = CBC + (CBCA * 0.877), Total THC-O-Acetate = Delta 8 THC-O-Acetate + Delta 9 THC - O-Acetate, Other Cannabinoids Total = Total Cannabinoids - All the listed cannabinoids on the summary section, Total Detected Cannabinoids = Deta6a10a-THC + Total CBN - CBT > Deta8a510a-THC + Total CBN - CBT > Deta8a510a-THCV + CBL + Total THC - Acetate, Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/ml) = Milligrams per Milliliter, LOQ = Limit of Quantitation, LOD = Limit of Detection, (Julyo) = Million Factor (pb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram, (fu/g) = Colony Forming Unit per Gram, (LOQ = Limit of Detection, Quantitation = Area Ratio, (mg/Kg) = Millingrams per Gram (ppm) = Parts per Millior = Kilogram, *Measurement of Uncertainty = 4/-10%

СО

Pathogenic SAE (qPCR) -

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. ACS Laboratory is accredited to the ISO/IEC 17025:2017 Standard.

Passed

SOP13.029

721 Cortaro Dr. Sun City Center, FL 33573 www.acslabcannabis.com

DEA No. RA0571996 FL License # CMTL-0003 CLIA No. 10D1094068

Lotion Sample Matrix: CBD/HEMP Derivative Products (External Use)

Passed

SOP 14.003 (LCMS/GCMS)

Certificate of Analysis

Compliance Test

CLOUD CO. FARMS PO BOX 681 ALAMOSA, CO 81101	Batch # CCF-FSL3000-001 Batch Date: 2022-12-01 Extracted From: CCF-07182022-D123	Sampling Method: MSP 7.3.1 Test Reg State: Florida	
Order # CLO221201-010001 Order Date: 2022-12-01 Sample # AADU670	Sampling Date: 2022-12-05 Lab Batch Date: 2022-12-05 Completion Date: 2022-12-12	Initial Gross Weight: 137.500 g Net Weight: 108.032 g	Number of Units: 1 Net Weight per Unit: 118294.000 mg

Pesticides - CO

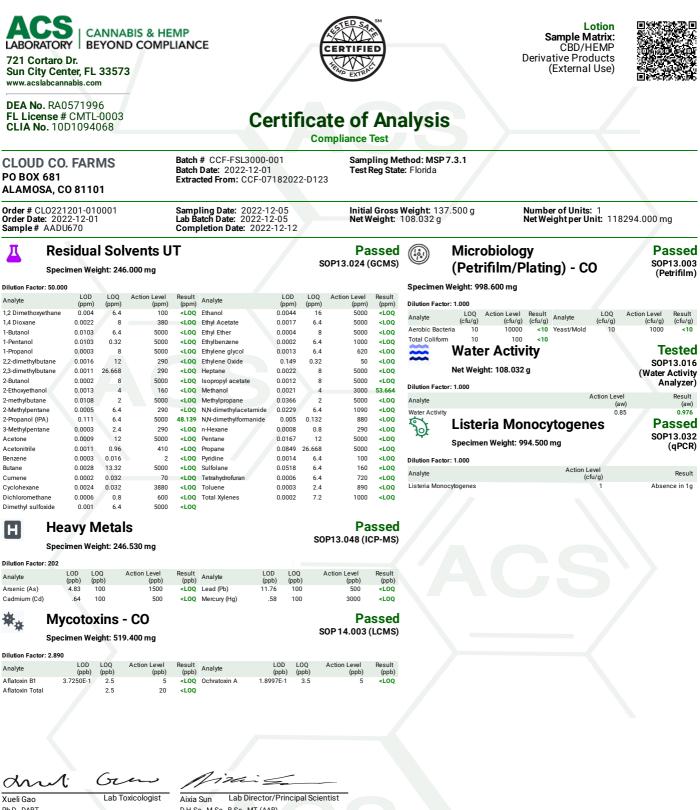
Ö"

Specimen Weight: 519.400 mg

Dilution Factor: 2.890														
Analyte	LOD (ppb)	LOQ (ppb)	Action Level (ppb)	Result (ppb)	Analyte	LOD (ppb)	LOQ (ppb)	Action Level (ppb)	Result (ppb)	Analyte		LOQ (ppb)	Action Level	Result (ppb)
Abamectin	0.000318	250	250	<loq< td=""><td>Dodemorph</td><td>0.0000000000647</td><td>50</td><td>0</td><td><l0q< td=""><td></td><td></td><td></td><td>(ppb)</td><td></td></l0q<></td></loq<>	Dodemorph	0.0000000000647	50	0	<l0q< td=""><td></td><td></td><td></td><td>(ppb)</td><td></td></l0q<>				(ppb)	
Acephate	0.039632	50	50	<loq< td=""><td>Endosulfan sulfate</td><td>0.88376</td><td>2500</td><td>2500</td><td><loq< td=""><td>Naled</td><td>0.00000585</td><td></td><td>0</td><td></td></loq<></td></loq<>	Endosulfan sulfate	0.88376	2500	2500	<loq< td=""><td>Naled</td><td>0.00000585</td><td></td><td>0</td><td></td></loq<>	Naled	0.00000585		0	
Acequinocyl	0.057646	30	0	<loq< td=""><td>Endosulfan-alpha</td><td>12.22</td><td>2500</td><td>2500</td><td><l0q< td=""><td>Novaluron</td><td>0.000205</td><td>25</td><td>25</td><td></td></l0q<></td></loq<>	Endosulfan-alpha	12.22	2500	2500	<l0q< td=""><td>Novaluron</td><td>0.000205</td><td>25</td><td>25</td><td></td></l0q<>	Novaluron	0.000205	25	25	
Acetamiprid	0.00000000338	50	50	<loq< td=""><td>Endosulfan-beta</td><td>22.76</td><td>2500</td><td>2500</td><td><l0q< td=""><td>Oxamyl</td><td>0.001619</td><td></td><td>1500</td><td></td></l0q<></td></loq<>	Endosulfan-beta	22.76	2500	2500	<l0q< td=""><td>Oxamyl</td><td>0.001619</td><td></td><td>1500</td><td></td></l0q<>	Oxamyl	0.001619		1500	
Aldicarb	0.022744	500	500	<loq< td=""><td>Ethoprophos</td><td>0.0000159</td><td>10</td><td>10</td><td><l0q< td=""><td>Paclobutrazol</td><td>0.000000693</td><td>10</td><td>10</td><td></td></l0q<></td></loq<>	Ethoprophos	0.0000159	10	10	<l0q< td=""><td>Paclobutrazol</td><td>0.000000693</td><td>10</td><td>10</td><td></td></l0q<>	Paclobutrazol	0.000000693	10	10	
Allethrin	0.472436	100	100	<loq< td=""><td>Etofenprox</td><td>0.008305</td><td>50</td><td>0</td><td><l0q< td=""><td>Pentachloronitrobenzen(Quintozene)</td><td></td><td>20</td><td>0</td><td></td></l0q<></td></loq<>	Etofenprox	0.008305	50	0	<l0q< td=""><td>Pentachloronitrobenzen(Quintozene)</td><td></td><td>20</td><td>0</td><td></td></l0q<>	Pentachloronitrobenzen(Quintozene)		20	0	
Atrazine	0.379918	25	0	<loq< td=""><td>Etoxazole</td><td>0.835582</td><td>20</td><td>0</td><td><l0q< td=""><td>Permethrin</td><td>0.022089</td><td>500</td><td>0</td><td></td></l0q<></td></loq<>	Etoxazole	0.835582	20	0	<l0q< td=""><td>Permethrin</td><td>0.022089</td><td>500</td><td>0</td><td></td></l0q<>	Permethrin	0.022089	500	0	
Azadirachtin	0.003071	500	500	<loq< td=""><td>Etridiazole</td><td>4.02</td><td>150</td><td>150</td><td><l0q< td=""><td>Phenothrin</td><td>0.00000212</td><td>50</td><td>0</td><td></td></l0q<></td></loq<>	Etridiazole	4.02	150	150	<l0q< td=""><td>Phenothrin</td><td>0.00000212</td><td>50</td><td>0</td><td></td></l0q<>	Phenothrin	0.00000212	50	0	
Azoxystrobin	0.013247	10	10	<l0q< td=""><td>Fenhexamid</td><td>1.094685</td><td>125</td><td>0</td><td><l0q< td=""><td>Phosmet</td><td>0.009615</td><td>20</td><td>0</td><td></td></l0q<></td></l0q<>	Fenhexamid	1.094685	125	0	<l0q< td=""><td>Phosmet</td><td>0.009615</td><td>20</td><td>0</td><td></td></l0q<>	Phosmet	0.009615	20	0	
Benzovindiflupyr	0.012567	10	10	<loq< td=""><td>Fenoxycarb</td><td>0.345072</td><td>10</td><td>10</td><td><l0q< td=""><td>Piperonylbutoxide</td><td>0.00000134</td><td>1250</td><td>1250</td><td><loq< td=""></loq<></td></l0q<></td></loq<>	Fenoxycarb	0.345072	10	10	<l0q< td=""><td>Piperonylbutoxide</td><td>0.00000134</td><td>1250</td><td>1250</td><td><loq< td=""></loq<></td></l0q<>	Piperonylbutoxide	0.00000134	1250	1250	<loq< td=""></loq<>
Bifenazate	0.000000217	10	10	<loq< td=""><td>Fenpyroximate</td><td>0.000000448</td><td>20</td><td>0</td><td><l0q< td=""><td>Pirimicarb</td><td>0.0000566</td><td>10</td><td>10</td><td></td></l0q<></td></loq<>	Fenpyroximate	0.000000448	20	0	<l0q< td=""><td>Pirimicarb</td><td>0.0000566</td><td>10</td><td>10</td><td></td></l0q<>	Pirimicarb	0.0000566	10	10	
Bifenthrin	0.000842	1000	0	<loq< td=""><td>Fensulfothion</td><td>0.000794</td><td>10</td><td>10</td><td><l0q< td=""><td>Prallethrin</td><td>0.167321</td><td>50</td><td>0</td><td><loq< td=""></loq<></td></l0q<></td></loq<>	Fensulfothion	0.000794	10	10	<l0q< td=""><td>Prallethrin</td><td>0.167321</td><td>50</td><td>0</td><td><loq< td=""></loq<></td></l0q<>	Prallethrin	0.167321	50	0	<loq< td=""></loq<>
Boscalid	0.00000433	10	10	<loq< td=""><td>Fenthion</td><td>4.911315</td><td>10</td><td>10</td><td><l0q< td=""><td>Propiconazole</td><td>0.000000000000213</td><td>10</td><td>0</td><td><loq< td=""></loq<></td></l0q<></td></loq<>	Fenthion	4.911315	10	10	<l0q< td=""><td>Propiconazole</td><td>0.000000000000213</td><td>10</td><td>0</td><td><loq< td=""></loq<></td></l0q<>	Propiconazole	0.000000000000213	10	0	<loq< td=""></loq<>
Buprofezin	0.0000000166	20	0	<loq< td=""><td>Fenvalerate</td><td>0.597752</td><td>100</td><td>0</td><td><l00< td=""><td>Propoxur</td><td>0.350807</td><td>10</td><td>10</td><td><loq< td=""></loq<></td></l00<></td></loq<>	Fenvalerate	0.597752	100	0	<l00< td=""><td>Propoxur</td><td>0.350807</td><td>10</td><td>10</td><td><loq< td=""></loq<></td></l00<>	Propoxur	0.350807	10	10	<loq< td=""></loq<>
Carbaryl	0.0000138	25	25	<l00< td=""><td>Fipronil</td><td>0.028847</td><td>10</td><td>10</td><td><l00< td=""><td>Pyraclostrobin</td><td>0.00000531</td><td>10</td><td>10</td><td><loq< td=""></loq<></td></l00<></td></l00<>	Fipronil	0.028847	10	10	<l00< td=""><td>Pyraclostrobin</td><td>0.00000531</td><td>10</td><td>10</td><td><loq< td=""></loq<></td></l00<>	Pyraclostrobin	0.00000531	10	10	<loq< td=""></loq<>
Carbofuran	0.0000776	10	10	<loq< td=""><td>Flonicamid</td><td>0.069733</td><td>25</td><td>25</td><td><l00< td=""><td>Pyrethrins</td><td>0.006235</td><td>50</td><td>0</td><td><loq< td=""></loq<></td></l00<></td></loq<>	Flonicamid	0.069733	25	25	<l00< td=""><td>Pyrethrins</td><td>0.006235</td><td>50</td><td>0</td><td><loq< td=""></loq<></td></l00<>	Pyrethrins	0.006235	50	0	<loq< td=""></loq<>
Chlorantraniliprole	0.135592	20	0	<loq< td=""><td>Fludioxonil</td><td>0.013402</td><td>10</td><td>10</td><td><l00< td=""><td>Pyridaben</td><td>0.000000000000875</td><td>20</td><td>20</td><td><loq< td=""></loq<></td></l00<></td></loq<>	Fludioxonil	0.013402	10	10	<l00< td=""><td>Pyridaben</td><td>0.000000000000875</td><td>20</td><td>20</td><td><loq< td=""></loq<></td></l00<>	Pyridaben	0.000000000000875	20	20	<loq< td=""></loq<>
Chlorfenapyr	15.37	1500	1500	<l0q< td=""><td>Fluopyram</td><td>0.00000000112</td><td>10</td><td>10</td><td><l0q< td=""><td>Pyriproxyfen</td><td>0.0000958</td><td>10</td><td>0</td><td><loq< td=""></loq<></td></l0q<></td></l0q<>	Fluopyram	0.00000000112	10	10	<l0q< td=""><td>Pyriproxyfen</td><td>0.0000958</td><td>10</td><td>0</td><td><loq< td=""></loq<></td></l0q<>	Pyriproxyfen	0.0000958	10	0	<loq< td=""></loq<>
Chlorpyrifos	0.0000909	500	500		Hexythiazox	0.0000619	10	0	<l0q< td=""><td>Resmethrin</td><td>0.068013</td><td>50</td><td>50</td><td><loq< td=""></loq<></td></l0q<>	Resmethrin	0.068013	50	50	<loq< td=""></loq<>
Clofentezine	0.000000371	10	10	<l00< td=""><td>Imazalil</td><td>0.000295</td><td>10</td><td>10</td><td><l00< td=""><td>Spinetoram</td><td>0.023645</td><td>10</td><td>10</td><td><loq< td=""></loq<></td></l00<></td></l00<>	Imazalil	0.000295	10	10	<l00< td=""><td>Spinetoram</td><td>0.023645</td><td>10</td><td>10</td><td><loq< td=""></loq<></td></l00<>	Spinetoram	0.023645	10	10	<loq< td=""></loq<>
Clothianidin	0.000399	25	25	<l00< td=""><td>Imidacloprid</td><td>0.000153</td><td>10</td><td>10</td><td><l00< td=""><td>Spinosad</td><td>0.599029</td><td>10</td><td>10</td><td><loq< td=""></loq<></td></l00<></td></l00<>	Imidacloprid	0.000153	10	10	<l00< td=""><td>Spinosad</td><td>0.599029</td><td>10</td><td>10</td><td><loq< td=""></loq<></td></l00<>	Spinosad	0.599029	10	10	<loq< td=""></loq<>
Coumaphos	0.0000986	10	10		Iprodione	0.105543	500	500	<l00< td=""><td>Spirodiclofen</td><td>03737699.6</td><td>250</td><td>0</td><td><loq< td=""></loq<></td></l00<>	Spirodiclofen	03737699.6	250	0	<loq< td=""></loq<>
Cyantraniliprole	0.006004	10	10		Kinoprene	3.4	500	1250	<l00< td=""><td>Spiromesifen</td><td>0.321831</td><td>3000</td><td>0</td><td><loq< td=""></loq<></td></l00<>	Spiromesifen	0.321831	3000	0	<loq< td=""></loq<>
Cyfluthrin	28.13	200	0		Kresoxim Methyl	0.000145	150	150	<l0q< td=""><td>Spirotetramat</td><td>0.04276</td><td>10</td><td>10</td><td><loq< td=""></loq<></td></l0q<>	Spirotetramat	0.04276	10	10	<loq< td=""></loq<>
Cypermethrin	0.00000119	300	0		Lambda Cyhalothrin	0.116859	250	0	<l00< td=""><td>Spiroxamine</td><td>1.217217</td><td>100</td><td>0</td><td><loq< td=""></loq<></td></l00<>	Spiroxamine	1.217217	100	0	<loq< td=""></loq<>
Cyprodinil	0.001141	10	10		Malathion	0.000133	10	10	<l00< td=""><td>Tebuconazole</td><td>0.000000000000148</td><td>10</td><td>10</td><td><loq< td=""></loq<></td></l00<>	Tebuconazole	0.000000000000148	10	10	<loq< td=""></loq<>
Daminozide	0.30408	100	0		Metalaxvl	0.0000486	10	10	<l00< td=""><td>Tebufenozide</td><td>0.018121</td><td>10</td><td>10</td><td><loq< td=""></loq<></td></l00<>	Tebufenozide	0.018121	10	10	<loq< td=""></loq<>
Deltamethrin	0.492837	500	0		Methiocarb	0.002281	10	10	<l00< td=""><td>Teflubenzuron</td><td>0.01662</td><td>25</td><td>25</td><td><loq< td=""></loq<></td></l00<>	Teflubenzuron	0.01662	25	25	<loq< td=""></loq<>
Diazinon	0.00000000391	20	0	<l00< td=""><td>Methomyl</td><td>0.00000115</td><td>25</td><td>25</td><td><l00< td=""><td>Tetrachlorvinphos</td><td>0.839125</td><td>10</td><td>10</td><td><loq< td=""></loq<></td></l00<></td></l00<>	Methomyl	0.00000115	25	25	<l00< td=""><td>Tetrachlorvinphos</td><td>0.839125</td><td>10</td><td>10</td><td><loq< td=""></loq<></td></l00<>	Tetrachlorvinphos	0.839125	10	10	<loq< td=""></loq<>
Dichlorvos	1.140571	50	50		Methoprene	1.148463	2000	0	<l00< td=""><td>Tetramethrin</td><td>0.0000992</td><td>100</td><td>0</td><td><loq< td=""></loq<></td></l00<>	Tetramethrin	0.0000992	100	0	<loq< td=""></loq<>
Dimethoate	0.00000284	10	10		methyl-Parathion	4.24	50	0	<l00< td=""><td>Thiabendazole</td><td>0.001251</td><td>20</td><td>0</td><td><loq< td=""></loq<></td></l00<>	Thiabendazole	0.001251	20	0	<loq< td=""></loq<>
Dimethomorph	0.000157	50	0		Mevinphos	0.0000442	25	25	<l00< td=""><td>Thiacloprid</td><td>0.0000112</td><td>10</td><td>10</td><td><loq< td=""></loq<></td></l00<>	Thiacloprid	0.0000112	10	10	<loq< td=""></loq<>
Dinotefuran	0.236975	50	50		MGK-264	0.002588	50	0	<l00< td=""><td>Thiamethoxam</td><td>0.00000225</td><td>10</td><td>10</td><td><loq< td=""></loq<></td></l00<>	Thiamethoxam	0.00000225	10	10	<loq< td=""></loq<>
Diuron	0.006862	125	0		Myclobutanil	0.700059	10	10	<l00< td=""><td>Thiophanate-methyl</td><td>0.000223</td><td>50</td><td>0</td><td><loq< td=""></loq<></td></l00<>	Thiophanate-methyl	0.000223	50	0	<loq< td=""></loq<>
5101011	0.000002	.25	0	.200	injoiobatailii	0.700037	10	10	.200	Trifloxystrobin	0.000000000000217	10	10	<loq< td=""></loq<>

Xueli Gao Lab Toxio

Ph.D., DABT


1200 e Lab Toxicologist Aixia Sun

 Aixia Sun
 Lab Director/Principal Scientist

 D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: Total Active CBD = CBD + (CBD-A * 0.877), *Total CBDV = CBDV + (CBDVA * 0.87), Total Active THC = THCA-A * 0.877 + Delta 9 THC, Total THCV = THCV + (THCVA * 0.87), CBG Total = (CBAA * 0.877), *Total CBDV = CBDV + (CBDVA * 0.87), Total Active THC = THCA-A * 0.877), Total THC-O-Acetate = Delta 8 THCO-Acetate + Delta 9 THC - O-Acetate, Other Cannabinoids Total = (CBAA * 0.877), Total CBDV = CBDV + (CBDVA * 0.87), Total Active THC = THCA-A * 0.877), Total THCO-Acetate = Delta 8 THCO-Acetate + Delta 9 THC-O-Acetate, Other Cannabinoids Total = CBAA * 0.877), Total CBDV = Deta 2 CBC + (CBCA * 0.877), Total CBC = CBC + (CBCA * 0.877), Total CBC = CBC + Total CBC + Total CBC + Total CBV + Delta 0 = THCV + Total CBV + CBT + Delta 8 THCV + TOtal CBC + Total CBV + Delta 10 = THCV + CBL + Total THC + Total CBC + Total CBV + Delta 10 = THCV + Total THC + Total CBC + Total CBC + Total CBC + Total CBD + Total THCV + CBL + Total THC + Total CBC + Total CBC + Total CBV + Delta 10 = THCV + Total THC - D-Acetate, Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/ml) = Milligrams per Milliora, IDC = Limit of Quantitation, LOD = Limit of Detection, Dilution = Dilution = Detactor (pbP) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram, ,LOD = Limit of Detection, (µ/g) = Microgram per Gram (ppm) = Parts per Million, (ppm) = (µ/g), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram , *Measurement of Uncertainty = +/- 10% This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. ACS Laboratory is accredited to the ISO/IEC 17025:2017 Standard.

Ph.D., DABT

D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: Total Active CBD = CBD + (CBD-A * 0.877), *Total CBDV = CBDV + (CBDVA * 0.87), Total Active THC = THCA-A * 0.877 + Delta 9 THC, Total THCV = THCV + (THCVA * 0.87), CBG Total = (CBGA * 0.877), *Total CBDV = CBDV + (CBDVA * 0.87), Total Active THC = THCA-A * 0.877 + Delta 9 THC, Total THCV = THCV + (THCVA * 0.87), CBG Total = (CBGA * 0.877) + CBG, CBN Total = (CBNA * 0.877) + CBN, Total CBC = CBC + (CBCA * 0.877), Total THC - 0-Acetate = Delta 8 THC - 0-Acetate = Delta 9 THC - 0-Acetate, Other Cannabinoids Total = Total Cannabinoids - All the listed cannabinoids on the summary section, Total Detected Cannabinoids = THC + Total CBN + CBT > Delta 8 THC + Total CBV + Delta 10 - THC + Fotal THC + CBT = Delta 8 THC + Total CBV + Delta 10 - THC + Total THC - 0-Acetate, Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/ml) = Milligrams per Milliliter, LOQ = Limit of Quantitation, LOD = Limit of Detection, Dilution Factor (ppb) = Parts per Billion, (%) = Percent, (cfurg) = Colony Forming Unit per Gram, (furg) = Microgram per Gram (ppm) = Parts per Million, (ppm) = (µg/g), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram , *Measurement of Uncertainty = +/- 10% This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. ACS Laboratory is accredited to the ISO/IEC 17025:2017 Standard.

51 W. Weldon Ave Phoenix, AZ (480) 788-6644 www.desertvalleytesting.com

Batch

2815 S 5th Ct Milwaukee, WI 53207 (262) 364-6940

Laboratory Number: 2209028-08

Batch #: 4E244C

Sample Received:9/9/2022; Report Created: 9/16/2022

Clarity 3000mg


Ingestible

Cannabir	noid (HPLC) An	alyzed: 09/16/	22 By: KSG		
	LOQ %	mg/g	mg/unit	%	
Compound					
THC-A	0.02014	ND	ND	ND	
delta 9-THC	0.02014	2.3161	68.56	0.23161	
delta 8-THC	0.02014	ND	ND	ND	
THC-V	0.02014	ND	ND	ND	
CBG-A	0.02014	ND	ND	ND	
CBD-A	0.02014	ND	ND	ND	
CBD	0.20135	103.1	3050.7	10.306	
CBD-V	0.02014	0.5505	16.30	0.05505	
CBN	0.02014	0.4010	11.87	0.04010	
CBG	0.02014	1.6246	48.09	0.16246	
CBC	0.02014	1.0466	30.98	0.10466	
2.3161 mg/g 68.56 mg/unit 0.23161 %	3050.70	42 mg/g) mg/unit)642 %	3226	.0034 mg/g 6.50 mg/unit).90034%	
Total THC	Tota	I CBD	Total C	Cannabinoids	
Total THC = THCa * 0.877 + delta 9	THC; Total CBD =	CBDa * 0.877 +	CBD		
44.50 : 1	Not	Fested	No	ot Tested	
CBD to THC Ratio	Water	Activity		Moisture	
	-				

Terpenes (GCMS-MS) Analyzed:	By:
	, g mg/g	%
Compound	9.9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	NT	NT
alpha-Bisabolol	NT	NT
(-)-Borneol and (+)-Borneol	NT	NT
Camphene	NT	NT
Camphor	NT	NT
beta-Caryophyllene	NT	NT
trans-Caryophyllene		
Caryophyllene Oxide	NT NT	NT NT
alpha-Cedrene		NT
	NT	
Endo-fenchyl Alcohol	NT	NT
Eucalyptol	NT	NT
Fenchone	NT	NT
Geraniol	NT	NT
Geranyl acetate	NT	NT
Guaiol	NT	NT
Hexahydrothymol	NT	NT
alpha-Humulene	NT	NT
Isoborneol	NT	NT
Isopulegol	NT	NT
Limonene	NT	NT
Linalool	NT	NT
p-Mentha-1,5-diene	NT	NT
beta-Myrcene	NT	NT
trans-Nerolidol	NT	NT
Ocimene	NT	NT
alpha-Pinene	NT	NT
beta-Pinene	NT	NT
Pulegone	NT	NT
Sabinene	NT	NT
Sabinene Hydrate	NT	NT
gamma-Terpinene	NT	NT
alpha-Terpinene	NT	NT
3-Carene	NT	NT
Terpineol	NT	NT
Terpinolene	NT	NT
Valencene	NT	NT
Nerol	NT	NT
cis-Nerolidol	NT	NT
Total Terpenes	NT	NT

Safety

This product has been tested by Desert Valley Testing using valid testing methodologies. Values reported only relate to the product tested. Desert Valley Testing makes no claims to the efficacy, safety or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written approval of Desert Valley Testing.

Kaycha Labs Full Spectrum Distillate

N/A Matrix : Derivative

TESTED

PASSED

Certificate of Analysis

BATCH

r 6

N63W22595 Main St Sussex, WI, 53089, US Telephone: (262) 364-6940 Email: griff@hellobatch.com

Sample : KN20907013-002 Harvest/Lot ID: 220722 Batch#:01 Sampled : 08/22/22 Ordered : 08/22/22

Sample Size Received : 15 gram Total Batch Size : N/A Completed : 09/19/22 Expires: 09/19/23 Sample Method : SOP Client Method

Consumables : N/A

Page 2 of 6

Pesticides

Pesticide	LOD	Units	Action	Pass/Fail	Result
ABAMECTIN B1A	0.01	ppm	0.3	PASS	ND
ACEPHATE	0.01	ppm	3	PASS	ND
ACEQUINOCYL	0.01	ppm	2	PASS	ND
ACETAMIPRID	0.01	ppm	3	PASS	ND
ALDICARB	0.01	ppm	0.1	PASS	ND
AZOXYSTROBIN	0.01	ppm	3	PASS	ND
BIFENAZATE	0.01	ppm	3	PASS	ND
BIFENTHRIN	0.01	ppm	0.5	PASS	ND
BOSCALID	0.01	ppm	3	PASS	ND
CARBARYL	0.01	ppm	0.5	PASS	ND
CARBOFURAN	0.01	ppm	0.1	PASS	ND
CHLORANTRANILIPROLE	0.01	ppm	3	PASS	ND
CHLORMEQUAT CHLORIDE	0.01	ppm	3	PASS	ND
CHLORPYRIFOS	0.01	ppm	0.1	PASS	ND
CLOFENTEZINE	0.01	ppm	0.5	PASS	ND
COUMAPHOS	0.01	ppm	0.1	PASS	ND
CYPERMETHRIN	0.01	ppm	1/	PASS	ND
DAMINOZIDE	0.01	ppm	0.1	PASS	ND
DIAZANON	0.01	ppm	0.2	PASS	ND
DICHLORVOS	0.01	ppm	0.1	PASS	ND
DIMETHOATE	0.01	ppm	0.1	PASS	ND
DIMETHOMORPH	0.01	ppm	3	PASS	ND
ETHOPROPHOS	0.01	ppm	0.1	PASS	ND
ETOFENPROX	0.01	ppm	0.1	PASS	ND
ETOXAZOLE	0.01	ppm	1.5	PASS	ND
FENHEXAMID	0.01	ppm	3	PASS	ND
FENOXYCARB	0.01	ppm	0.1	PASS	ND
FENPYROXIMATE	0.01	ppm	2	PASS	ND
FIPRONIL	0.01	ppm	0.1	PASS	ND
FLONICAMID	0.01	ppm	2	PASS	ND
FLUDIOXONIL	0.01	ppm	3	PASS	ND
HEXYTHIAZOX	0.01	ppm	2	PASS	ND
IMAZALIL	0.01	ppm	0.1	PASS	ND
IMIDACLOPRID	0.01	ppm	3	PASS	ND
KRESOXIM-METHYL	0.01	ppm	1	PASS	ND
MALATHION	0.01	ppm	2	PASS	ND
METALAXYL	0.01	ppm	3	PASS	ND
METHIOCARB	0.01	ppm	0.1	PASS	ND
METHOMYL	0.01	ppm	0.1	PASS	ND
MEVINPHOS	0.01	ppm	0.1	PASS	ND
MYCLOBUTANIL	0.01	ppm	3	PASS	ND
NALED	0.01	ppm	0.5	PASS	ND
OXAMYL	0.01	ppm	0.5	PASS	ND
PACLOBUTRAZOL	0.01	ppm	0.1	PASS	ND
PERMETHRINS	0.01	ppm	1	PASS	ND
PHOSMET	0.01	ppm	0.2	PASS	ND
		· /			

Pesticide	28	LOD	Units	Action Level	Pass/Fail	Result
PIPERONYL BUTOX	IDE	0.01	ppm	3	PASS	ND
PRALLETHRIN		0.01	ppm	0.4	PASS	ND
PROPICONAZOLE		0.01	ppm	1	PASS	ND
PROPOXUR		0.01	ppm	0.1	PASS	ND
PYRETHRINS		0.01	ppm	1	PASS	ND
PYRIDABEN		0.01	ppm	3	PASS	ND
SPINETORAM		0.01	ppm	3	PASS	ND
SPIROMESIFEN		0.01	ppm	3	PASS	ND
SPIROTETRAMAT		0.01	ppm	3	PASS	ND
SPIROXAMINE		0.01	ppm	0.1	PASS	ND
TEBUCONAZOLE		0.01	ppm	1	PASS	ND
THIACLOPRID		0.01	ppm	0.1	PASS	ND
THIAMETHOXAM		0.01	ppm	1	PASS	ND
TOTAL SPINOSAD		0.01	ppm	3	PASS	ND
TRIFLOXYSTROBIN		0.01	ppm	3	PASS	ND
Analyzed by: 2803	Weight: 0.5085g	Extraction 09/13/22 18		Ŵ	Extracted 2803	by:
Analysis Method :S Analytical Batch :K Instrument Used :R Running on :N/A	0.060		d On :09/16/. ate :09/13/22		A	
Dilution : 0.01 Reagent : N/A						

Pipette : N/A Presticide analysis is performed using LC-MSMS which can quantify down to below single digit ppb concentrations for regulated Pesticides. Currently we analyze for 61 Pesticides. (Methods: SOP.T.30.065 Sample Preparation for Pesticides Analysis via LCMSMS and SOP.T40.065 Procedure for Pesticide Quantification Using LCMSMS). *Based on FL action limits.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND_Not be backed. MLA solution and the solution are applied to the solution of the solut ND=Not Dected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson

Lab Director State License # n/a ISO Accreditation # 17025:2017 Sulizuan

09/19/22

Signed On

Signature

Full Spectrum Distillate N/A

TESTED

Page 3 of 6

Certificate of Analysis

BATCH

Ĩ

N63W22595 Main St Sussex, WI, 53089, US Telephone: (262) 364-6940 Email: griff@hellobatch.com Sample : KN20907013-002 Harvest/Lot ID: 220722 Batch#:01 Sampled : 08/22/22 Ordered : 08/22/22

Sample Size Received : 15 gram Total Batch Size : N/A Completed : 09/19/22 Expires: 09/19/23 Sample Method : SOP Client Method

PASSED

Residual Solvents

Solvents	LOD	Units	Action Level	Pass/Fail	Result
ROPANE	500	ppm	2100	PASS	ND
UTANES (N-BUTANE)	500	ppm	2000	PASS	ND
IETHANOL	25	ppm	3000	PASS	ND
THYLENE OXIDE	0.5	ppm	5	PASS	ND
ENTANES (N-PENTANE)	75	ppm	5000	PASS	ND
THANOL	500	ppm	5000	PASS	ND
THYL ETHER	50	ppm	5000	PASS	ND
1-DICHLOROETHENE	0.8	ppm	8	PASS	ND
CETONE	75	ppm	5000	PASS	ND
-PROPANOL	50	ppm	500	PASS	ND
CETONITRILE	6	ppm	410	PASS	ND
ICHLOROMETHANE	12.5	ppm	600	PASS	ND
I-HEXANE	25	ppm	290	PASS	ND
THYL ACETATE	40	ppm	5000	PASS	ND
HLOROFORM	0.2	ppm	60	PASS	ND
ENZENE	0.1	ppm	2	PASS	ND
,2-DICHLOROETHANE	0.2	ppm	5	PASS	ND
EPTANE	500	ppm	5000	PASS	ND
RICHLOROETHYLENE	2.5	ppm	80	PASS	ND
OLUENE	15	ppm	890	PASS	ND
OTAL XYLENES - M, P & O - DIMETHYLBENZENE	15	ppm	2170	PASS	ND
	light:	Extraction date:		Extracted by:	
I/A N//	A	N/A		N/A	
nalysis Method : SOP.T.40.032 nalytical Batch : KN002878SOL sstrument Used : E-SHI-106 Residual Solvents unning on : N/A			Reviewed On : 09/19/22 Batch Date : 09/09/22 1		

Pipette : N/A

Residual solvents analysis is performed using GC-MS which can detect below single digit ppm concentrations. Currently we analyze for 22 residual solvents. (Method: SOP.T.40.032 Residual Solvents Analysis via GC-MS). *Based on FL action limi

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit of Quantitation (LoD) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson Lab Director State License # n/a ISO Accreditation # 17025:2017

Sutimo

Signature

09/19/22

Kaycha Labs

Full Spectrum Distillate N/A Matrix : Derivative

TESTED

Certificate of Analysis

BATCH

Consumables : N/A

Pipette : N/A

N63W22595 Main St Sussex, WI, 53089, US Telephone: (262) 364-6940 Email: griff@hellobatch.com Sample : KN20907013-002 Harvest/Lot ID: 220722 Batch# : 01 Sampled : 08/22/22 Ordered : 08/22/22

PASSED

Sample Size Received :15 gram Total Batch Size : N/A Completed : 09/19/22 Expires: 09/19/23 Sample Method : SOP Client Method

Page 4 of 6

S Microbial

Analyte		LOD	Units	Result	Pass / Fail	Action
ESCHERICHIA C	OLI SHIGELLA			Not Present	PASS	
SALMONELLA S	PECIFIC GENE			Not Present	PASS	
ASPERGILLUS F	LAVUS			Not Present	PASS	
ASPERGILLUS F	UMIGATUS			Not Present	PASS	
ASPERGILLUS N	IIGER			Not Present	PASS	
ASPERGILLUS T	ERREUS			Not Present	PASS	
Analyzed by: 2657	Weight: 1.0021g	Extractio 09/08/22	n date: 14:13:01	/	Extracted b 2657	y:
Analysis Method : Analytical Batch : Instrument Used : Running on : N/A			i On : 09/09/22 te : 09/07/22 10			
Dilution : N/A Reagent : N/A						

Mycotoxins PASSED Analyte LOD Units Result Pass / Action Fail Level AFLATOXIN G2 0.002 ND PASS 0.02 ppm AFLATOXIN G1 0.002 PASS ND 0.02 pom AFLATOXIN B2 PASS 0.002 ppm ND 0.02 AFLATOXIN B1 PASS 0.002 ppm ND 0.02 PASS **OCHRATOXIN A+** 0.002 ppm ND 0.02 TOTAL MYCOTOXINS 0.002 ppm ND PASS 0.02 Weight: 0.5085g Extraction date: 09/13/22 18:44:18 Extracted by: Analyzed by: 2803 2803 Analysis Method : SOP.T.30.060, SOP.T.40.060 Analytical Batch : KN002909MYC Instrument Used : E-SHI-125 Mycotoxins eviewed On : 09/16/22 16:46:18 Batch Date : 09/16/22 16:31:20 Running on : N/A Dilution : 0.01 Reagent : N/A Consumables : N/A Pipette : N/A

Aflatoxins B1, B2, G1, G2, and Ochratoxins A testing using LC-MS. (Method: SOP.T.30.060 for Sample Preparation and SOP.T40.065 Procedure for Mycotoxins Quantification Using LCMSMS. LOQ 5.0 ppb). "Based on FL action limits.

Heavy Metals PASSED Hg Metal LOD Units Result Pass / Action Fail Level ARSENIC-AS 0.02 ND PASS 1.5 ppm CADMIUM-CD PASS 0.02 ND 0.5 ppm MERCURY-HG 0.02 PASS ppm ND 3 LEAD-PB PASS 0.02 0.5 ND mog Analyzed by: 138, 12 Extraction date Extracted by: 0.2548g 09/09/22 14:46:47 138 Analysis Method : SOP.T.40.050, SOP.T.30.052 Reviewed On : 09/09/22 16:44:29 Analytical Batch : KN002871HEA Batch Date : 09/07/22 14:00:07 Instrument Used : Metals ICP/MS Running on : N/A Dilution : 50 Reagent : N/A Consumables : N/A Pipette : N/A

Heavy Metals screening is performed using ICP-MS (Inductively Coupled Plasma – Mass Spectrometer) which can screen down to single digit ppb concentrations for regulated heavy metals using Method SOP.T.30.082 Sample Preparation for Heavy Metals Analysis via ICP-MS and SOP.T.40.082TN Heavy Metals Analysis via ICP-MS.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoO) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson

Lab Director State License # n/a ISO Accreditation # 17025:2017 Sulinguan

Signature

09/19/22

Full Spectrum Distillate N/A Matrix : Derivative

TESTED

Certificate of Analysis

ватсн

N63W22595 Main St Sussex, WI, 53089, US Telephone: (262) 364-6940 Email: griff@hellobatch.com Sample : KN20907013-002 Harvest/Lot ID: 220722 Batch#:01 Sampled : 08/22/22 Ordered : 08/22/22

PASSED

Sample Size Received : 15 gram Total Batch Size : N/A Completed : 09/19/22 Expires: 09/19/23 Sample Method : SOP Client Method

Filth/Foreign Material

Analyte Filth and Foreig	n Material	LOD	Units detect/g	Result ND	P/F PASS	Action Level
Analyzed by: 2657	Weight: 0.7115g		tion date: 22 14:16:35		Extra 2657	acted by:
Analysis Method : : Analytical Batch :) Instrument Used : Running on : N/A			Revi		09/08/22 14 9/07/22 10:2	

This includes but is not limited to hair, insects, feces, packaging contaminants, and manufacturing waste and by-products. A SW-2T13 Stereo Microscope is use for inspection.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=in-control QC parameter, NC=Mon-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit to f Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson

Lab Director State License # n/a ISO Accreditation # 17025:2017 Sulimor

Signature

09/19/22

Kaycha Labs Full Spectrum Distillate

N/A Matrix : Derivative

TESTED

Certificate of Analysis

BATCH

N63W22595 Main St Sussex, WI, 53089, US Telephone: (262) 364-6940 Email: griff@hellobatch.com Sample : KN20907013-002 Harvest/Lot ID: 220722 Batch#:01 Sampled : 08/22/22 Ordered : 08/22/22

Sample Size Received : 15 gram Total Batch Size : N/A Completed : 09/19/22 Expires: 09/19/23 Sample Method : SOP Client Method

PASSED Environmental

Analyte	Result	Pass/Fail	Action
ASPERGILLUS FLAVUS (ENV)	Not Present	TESTED	
BILE TOLERANT GRAM NEGATIVE HIG	H Not Present	TESTED	
TOTAL AEROBIC BACTERIA HIGH	Not Present	TESTED	
TOTAL ENTEROBACTERIACEAE HIGH	Not Present	TESTED	
AEROMONAS HYDROPHILIA & SALMONICIDA	Not Present	TESTED	
BACILLUS GROUP 1	Not Present	TESTED	
BACILLUS GROUP 2	Not Present	TESTED	
CAMPYLOBACTER SPP.	Not Present	TESTED	
ESCHERICHIA COLI/SHIGELLA SPP. (E	NV) Not Present	TESTED	
LISTERIA SPP.	Not Present	TESTED	
PSEUDOMONAS AERUGINOSA (ENV)	Not Present	TESTED	
PSEUDOMONAS SPP.	Not Present	TESTED	
SALMONELLA ENTERICA/ENTEROBACT	TER Not Present	TESTED	
STAPHYLOCOCCUS AUREUS (ENV)	Not Present	TESTED	
TOTAL YEAST & MOLD HIGH	Not Present	TESTED	
ALTERNARIA SPP.	Not Present	TESTED	
ASPERGILLUS FUMIGATUS (ENV)	Not Present	TESTED	
ASPERGILLUS NIGER (ENV)	Not Present	TESTED	
ASPERGILLUS TERREUS (ENV)	Not Present	TESTED	
BOTRYTIS SPP.	Not Present	TESTED	
CAN. ALB/TROP/DUB	Not Present	TESTED	
CAN. GLAB/SACH & KLUV SPP.	Not Present	TESTED	
CANDIDA ALBICANS	Not Present	TESTED	
CLADOSPORIUM SPP.	Not Present	TESTED	
FUSARIUM OXYSPORUM	Not Present	TESTED	
FUSARIUM SOLANI	Not Present	TESTED	
GOLOVINOMYCES 1J2	Not Present	TESTED	
MUCOR SPP.	Not Present	TESTED	
PEN & ASP SPP.	Not Present	TESTED	
PENICILLIUM SPP.	Not Present	TESTED	
SACCHAROMYCES SPP.	Not Present	TESTED	
	Extraction date:	Extracte N/A	d by:

074
eviewed On : 09/19/22 11:24:52 atch Date : N/A

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=in-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, Deb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for concurnation and/or inhalation. The reav usrible based on uncertainty of for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson

Lab Director State License # n/a ISO Accreditation # 17025:2017 Sulimon

Signature

09/19/22

ICAL ID: 20220916-003 Sample: CA220916-016-085 cbdMD-TIN-CM-6000-FS Strain: cbdMD-TIN-CM-6000-FS Category: Ingestible cbdMD Lic # 10130 Perimeter Pkwy Charlotte , NC 28216

Lic #

QA SAMPLE - INFORMATIONAL ONLY

1 of 3

Batch#: 22571T6.1 Batch Size Collected: Total Batch Size: Collected: 09/19/2022; Received: 09/19/2022 Completed: 09/19/2022

1 Unit = bottle, 30,47 g.

Mois N Water A N	T 82.8	∆9-тнс 0 mg/unit	свр 6,831.47 mg/u	Total Cannabinoids Init 7,112.31 mg/unit	Total Terpenes 3.662 mg/g		
Summary Batch Cannabinoids Terpenes Residual Solvents Microbials Mycotoxins Heavy Metals Pesticides	SOP Used POT-PREP-004 High TERP-PREP-001 RS-PREP-001 MICRO-PREP-001 PESTMYCO-LC-PREP-001 HM-PREP-001 PESTMYCO-LC-PREP-001/ PEST-GC-PREP-001	09/19/2022 09/19/2022 09/19/2022 09/17/2022 09/16/2022	Pass Complete Complete Pass Pass Pass Pass Pass Pass	cb.chm CED OIL CED OIL CED TIL	Scan to see result		

Cannabinoid Profile

Carma		////							1 0111	, bottle	,
Analyte	LOQ (mg/g)	LOD (mg/g)	%	mg/g	mg/unit	Analyte	LOQ (mg/g)	LOD (mg/g)	%	mg/g	mg/unit
THCa	0.1841	0.0614	ND	ND	ND	CBDV	0.0741	0.0247	0.163	1.63	49.64
∆9-THC	0.0794	0.0265	0.272	2.72	82.80	CBN	0.1112	0.0371	0.042	0.42	12.80
∆8-THC	0.0824	0.0275	ND	ND	ND	CBGa	0.2669	0.0890	ND	ND	ND
THCV	0.0714	0.0238	ND	ND	ND	CBG	0.0915	0.0305	0.074	0.74	22.46
CBDa	0.0880	0.0293	ND	ND	ND	CBC	0.2221	0.0740	0.371	3.71	113.14
CBD	0.0755	0.0252	22.420	224.20	6831.47	Total THC			0.27	2.72	82.80
						Total CBD			22.42	224.20	6831.47
						Total			23.34	233.42	7112.31

Total THC=THCa* 0.877 + d9-THC;Total CBD = CBDa* 0.877 + CBD. LOD= Limit of Detection, LOQ= Limit of Quantitation, ND= Not Detected, NR= Not Reported. Potency is reported on a dry weight basis. Instrumentation and analysis SOPs used: Cannabinoids:UHPLC-DAD(POT-INST-005),Moisture:Moisture Analyzer(MOISTURE-001),Water Activity:Water Activity Meter(WA-INST-002), Foreign Material:Microscope(FOREIGN-001). Density measured at 19-24 °C, Water Activity measured at 0-90% RH. All QA submitted by the client, All CA State Compliance sampled using SAMPL-SOP-001.

Terpene Profile

Analyte	LOQ (mg/g)	LOD (mg/g)	%	mg/g	Analyte	LOQ (mg/g)	LOD (mg/g)	%	mg/g
α-Bisabolol	0.193	0.064	0.1370	1.370	Cedrol	0.207	0.069	ND	ND
δ-Limonene	0.449	0.150	0.0772	0.772	cis-Nerolidol	0.251	0.084	ND	ND
β-Caryophyllene	0.608	0.179	0.0648	0.648	Citronellol	0.598	0.120	ND	ND
α-Humulene	0.151	0.026	0.0352	0.352	δ-3-Carene	0.306	0.024	ND	ND
Menthol	0.215	0.072	0.0341	0.341	Eucalyptol	0.244	0.081	ND	ND
(-)-Guaiol	0.154	0.029	0.0179	0.179	Fenchol	0.152	0.024	ND	ND
α-Cedrene	0.151	0.032	ND	ND	Fenchone	0.151	0.025	ND	ND
α-Pinene	0.151	0.022	ND	ND	y-Terpinene	0.152	0.033	ND	ND
α-Terpinene	0.163	0.054	ND	ND	Geraniol	0.609	0.114	ND	ND
α-Terpineol	0.154	0.033	ND	ND	Geranyl Acetate	0.151	0.030	ND	ND
β-Eudesmol	0.227	0.076	ND	ND	Isoborneol	0.151	0.033	ND	ND
β-Myrcene	0.153	0.015	<loq< th=""><th><loq< th=""><th>Linalool</th><th>0.154</th><th>0.036</th><th>ND</th><th>ND</th></loq<></th></loq<>	<loq< th=""><th>Linalool</th><th>0.154</th><th>0.036</th><th>ND</th><th>ND</th></loq<>	Linalool	0.154	0.036	ND	ND
β-Pinene	0.306	0.027	ND	ND	Pulegone	0.169	0.056	ND	ND
Borneol	0.154	0.024	ND	ND	p-Cymene	0.175	0.058	ND	ND
Camphene	0.151	0.017	ND	ND	Terpinolene	0.154	0.013	ND	ND
Camphor	0.306	0.055	ND	ND	trans-Nerolidol	0.222	0.074	ND	ND
Caryophyllene Oxide	0.602	0.113	<loq< th=""><th><loq< th=""><th>Total</th><th></th><th></th><th>0.3662</th><th>3.662</th></loq<></th></loq<>	<loq< th=""><th>Total</th><th></th><th></th><th>0.3662</th><th>3.662</th></loq<>	Total			0.3662	3.662

NR= Not Reported (no analysis was performed), ND= Not Detected (the concentration is less then the Limit of Detection (LOD)). Analytical instrumentation used: HS-GC-MS; samples analyzed according to SOP TERP-INST-003.

Infinite Chemical Analysis Labs 8312 Miramar Mall San Diego, CA (858) 623-2740 www.infiniteCAL.com Lic# C8-0000047-LIC

osh M Swider

Confident Cannabis All Rights Reserved support@confidentcannabis.com (866) 506-5866 www.confidentcannabis.com

Josh Swider Lab Director, Managing Partner 09/19/2022

This product has been tested by Infinite Chemical Analysis, LLC using valid testing methodologies and a quality system as required by state law. All LQC samples were performed and met the prescribed acceptance criteria in 16 CCR section 15730, pursuant to 16 CCR section 15726(e)(13). Values reported relate only to the product tested. Infinite Chemical Analysis, LLC makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written approval of Infinite Chemical Analysis, LLC.

ICAL ID: 20220916-003 Sample: CA220916-016-085 cbdMD-TIN-CM-6000-FS Strain: cbdMD-TIN-CM-6000-FS Category: Ingestible

cbdMD Lic # 10130 Perimeter Pkwy Charlotte, NC 28216

Lic #

2 of 3

Batch#: 22571T6.1 Batch Size Collected: Total Batch Size: Collected: 09/19/2022; Received: 09/19/2022 Completed: 09/19/2022

Residual Solvent Analysis

Category 1		LOQ	LOD	Limit	Status	Category 2		LOQ	LOD L	imit Statu	s Category 2		LOQ	LOD	Limit	Status
1,2-Dichloro-Ethane	µg/g ND	µg/g 0.31	µg/g 0.1032	µg/g 1	Pass	Acetone	µg/g ND	µg/g 51.246	µg/g 2.572 5	ug/g 000 Pas	s n-Hexane	µg/g ND	µg/g 0.931	μg/g 0.31	µg/g 290	Pass
Benzene	ND (0.088	0.023	1	Pass	Acetonitrile	ND	0.798	0.266	410 Pas	s Isopropanol	337.8	5.037	1.679	5000	Pass
Chloroform	ND ().174	0.058	1	Pass	Butane	ND	4.849	1.114 5	000 Pas	s Methanol	ND	4.665	1.555	3000	Pass
Ethylene Oxide	ND ().757	0.252	1	Pass	Ethanol	1459.5	40.542	13.513 5	000 Pas	s Pentane	ND	17.255	5.752	5000	Pass
Methylene-Chloride	ND ().729	0.148	1	Pass	Ethyl-Acetate	ND	2.288	0.436 5	000 Pas	s Propane	ND	26.11	8.703	5000	Pass
Trichloroethene	ND	0.19	0.063	1	Pass	Ethyl-Ether	ND	2.869	0.593 5	000 Pas	s Toluene	ND	0.864	0.136	890	Pass
-						Heptane	<loq< th=""><th>6.548</th><th>2.183 5</th><th>000 Pas</th><th>s Xylenes</th><th>ND</th><th>0.857</th><th>0.241</th><th>2170</th><th>Pass</th></loq<>	6.548	2.183 5	000 Pas	s Xylenes	ND	0.857	0.241	2170	Pass

NR= Not Reported (no analysis was performed), ND= Not Detected (the concentration is less then the Limit of Detection (LOD)). Analytical instrumentation used: HS-GC-MS; samples analyzed according to SOP RS-INST-003.

Heavy Metal Screening

		LOQ	LOD	Limit	Status
	μg/g	µg/g	µg/g	µg/g	
Arsenic	ND	0.009	0.003	1.5	Pass
Cadmium	ND	0.002	0.001	0.5	Pass
Lead	ND	0.004	0.001	0.5	Pass
Mercury	ND	0.014	0.005	3	Pass

NR= Not Reported (no analysis was performed), ND= Not Detected (the concentration is less then the Limit of Detection (LOD)). Analytical instrumentation used: ICP-MS; samples analyzed according to SOP HM-INST-003.

Microbiological Screening

	Limit	Result	Status
	CFU/g	CFU/g	
Aspergillus flavus		NR	NT
Aspergillus fumigatus		NR	NT
Aspergillus niger		NR	NT
Aspergillus terreus		NR	NT
STEC		Not Detected	Pass
Salmonella SPP		Not Detected	Pass

ND=Not Detected. Analytical instrumentation used:qPCR; samples analyzed according to SOP MICRO-INST-001.

Infinite Chemical Analysis Labs

8312 Miramar Mall San Diego, CA (858) 623-2740 www.infiniteCAL.com Lic# C8-0000047-LIC

Josh Swider Lab Director, Managing Partner

Swider

Confident Cannabis All Rights Reserved support@confidentcannabis.com (866) 506-5866

www.confidentcannabis.com

09/19/2022

This product has been tested by Infinite Chemical Analysis, LLC using valid testing methodologies and a quality system as required by state law. All LQC samples were performed and met the prescribed acceptance criteria in 16 CCR section 15730, pursuant to 16 CCR section 15726(e)(13). Values reported relate only to the product tested. Infinite Chemical Analysis, LLC makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written approval of Infinite Chemical Analysis, LLC.

ICAL ID: 20220916-003 Sample: CA220916-016-085 cbdMD-TIN-CM-6000-FS Strain: cbdMD-TIN-CM-6000-FS Category: Ingestible cbdMD Lic # 10130 Perimeter Pkwy Charlotte , NC 28216

Lic #

QA SAMPLE - INFORMATIONAL ONLY

3 of 3

Batch#: 22571T6.1 Batch Size Collected: Total Batch Size: Collected: 09/19/2022; Received: 09/19/2022 Completed: 09/19/2022

Chemical Residue Screening

Category 1		LOQ	LOD	Status
	µg/g	µg/g	µg/g	
Aldicarb	ND	0.030	0.009	Pass
Carbofuran	ND	0.030	0.002	Pass
Chlordane	ND	0.075	0.025	Pass
Chlorfenapyr	ND	0.075	0.025	Pass
Chlorpyrifos	ND	0.030	0.008	Pass
Coumaphos	ND	0.030	0.005	Pass
Daminozide	ND	0.033	0.011	Pass
Dichlorvos	ND	0.030	0.007	Pass
Dimethoate	ND	0.030	0.007	Pass
Ethoprophos	ND	0.030	0.004	Pass
Etofenprox	ND	0.030	0.006	Pass
Fenoxycarb	ND	0.030	0.006	Pass
Fipronil	ND	0.030	0.008	Pass
Imazalil	ND	0.030	0.009	Pass
Methiocarb	ND	0.030	0.005	Pass
Mevinphos	ND	0.032	0.011	Pass
Paclobutrazol	ND	0.030	0.006	Pass
Parathion Methyl	ND	0.024	0.008	Pass
Propoxur	ND	0.030	0.005	Pass
Spiroxamine	ND	0.030	0.003	Pass
Thiacloprid	ND	0.030	0.002	Pass

5	Mycotoxins		LOQ	LOD	Limit	Status
_		µg/kg	µg/kg	µg/kg	µg/kg	
5	B1	ND	6.2	2.05		Tested
5	B2	ND	5	1.63		Tested
5	G1	ND	5.38	1.77		Tested
5	G2	ND	5	1.02		Tested
5	Ochratoxin A	ND	16.41	5.42	20	Pass
5	Total Aflatoxins	ND			20	Pass

					C 1 1						C 1 1
Category 2		LOQ	LOD	Limit	Status	Category 2		LOQ	LOD	Limit	<u>Status</u>
	µg/g	µg/g	µg/g	µg/g	_		µg/g	µg/g	µg/g	µg/g	_
Abamectin	ND	0.039	0.013	0.3	Pass	Kresoxim Methyl	ND	0.030	0.007	1	Pass
Acephate	ND	0.063	0.021	5	Pass	Malathion	ND	0.030	0.005	5	Pass
Acequinocyl	ND	0.035	0.011	4	Pass	Metalaxyl	<loq< th=""><th>0.030</th><th>0.003</th><th>15</th><th>Pass</th></loq<>	0.030	0.003	15	Pass
Acetamiprid	ND	0.030	0.006	5	Pass	Methomyl	ND	0.030	0.006	0.1	Pass
Azoxystrobin	ND	0.030	0.003	40	Pass	Myclobutanil	ND	0.030	0.007	9	Pass
Bifenazate	ND	0.030	0.005	5	Pass	Naled	ND	0.030	0.005	0.5	Pass
Bifenthrin	ND	0.030	0.006	0.5	Pass	Oxamyl	ND	0.030	0.009	0.3	Pass
Boscalid	ND	0.030	0.007	10	Pass	Pentachloronitrobenzene	ND	0.054	0.018	0.2	Pass
Captan	ND	0.358	0.120	5	Pass	Permethrin	ND	0.030	0.002	20	Pass
Carbaryl	ND	0.030	0.004	0.5	Pass	Phosmet	ND	0.030	0.005	0.2	Pass
Chlorantraniliprole	ND	0.030	0.006	40	Pass	Piperonyl Butoxide	ND	0.030	0.006	8	Pass
Clofentezine	ND	0.030	0.005	0.5	Pass	Prallethrin	ND	0.055	0.018	0.4	Pass
Cyfluthrin	ND	0.056	0.019	1	Pass	Propiconazole	ND	0.037	0.012	20	Pass
Cypermethrin	ND	0.044	0.015	1	Pass	Pyrethrins	ND	0.030	0.002	1	Pass
Diazinon	ND	0.030	0.009	0.2	Pass	Pyridaben	ND	0.030	0.005	3	Pass
Dimethomorph	ND	0.030	0.009	20	Pass	Spinetoram	ND	0.030	0.003	3	Pass
Etoxazole	ND	0.030	0.003	1.5	Pass	Spinosad	ND	0.030	0.003	3	Pass
Fenhexamid	ND	0.030	0.008	10	Pass	Spiromesifen	ND	0.030	0.005	12	Pass
Fenpyroximate	ND	0.030	0.005	2	Pass	Spirotetramat	ND	0.030	0.006	13	Pass
Flonicamid	ND	0.046	0.015	2	Pass	Tebuconazole	ND	0.030	0.009	2	Pass
Fludioxonil	ND	0.048	0.016	30	Pass	Thiamethoxam	ND	0.030	0.006	4.5	Pass
Hexythiazox	ND	0.031	0.010	2	Pass	Trifloxystrobin	ND	0.030	0.002	30	Pass
Imidacloprid	ND	0.030	0.009	3	Pass						

Other Analyte(s):

NR= Not Reported (no analysis was performed), ND= Not Detected (the concentration is less then the Limit of Detection (LOD)). Analytical instrumentation used: LC-MS-MS & GC-MS-MS; samples analyzed according to SOPs PESTMYCO-LC-INST-004 and PEST-GC-INST-003.

Infinite Chemical Analysis Labs 8312 Miramar Mall San Diego, CA (858) 623-2740 www.infiniteCAL.com Lic# C8-0000047-LIC

Swider

Confident Cannabis All Rights Reserved support@confidentcannabis.com (866) 506-5866 www.confidentcannabis.com

Josh Swider Lab Director, Managing Partner 09/19/2022

This product has been tested by Infinite Chemical Analysis, LLC using valid testing methodologies and a quality system as required by state law. All LQC samples were performed and met the prescribed acceptance criteria in 16 CCR section 15730, pursuant to 16 CCR section 15726(e)(13). Values reported relate only to the product tested. Infinite Chemical Analysis, LLC makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected levels of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written approval of Infinite Chemical Analysis, LLC.

Hemp Quality Assurance Testing CERTIFICATE OF ANALYSIS

DATE ISSUED 02/23/2022

SAMPLE NAME: cbdMD 750mg Full Spectrum Gummies

Infused, Hemp Infused

CULTIVATOR / MANUFACTURER

Business Name: License Number: Address:

SAMPLE DETAIL

Batch Number: 80245-1 Sample ID: 220222N010

DISTRIBUTOR / TESTED FOR

Business Name: cbdMD License Number:

Address:

Date Collected: 02/22/2022 Date Received: 02/22/2022 Batch Size: Sample Size: 1.0 units Unit Mass: 101.265 grams per Unit Serving Size: 3.3755 grams per Serving

Scan QR code to verify authenticity of results.

CANNABINOID ANALYSIS - SUMMARY

Total THC: 35.645 mg/unit

Total CBD: 774.272 mg/unit

Sum of Cannabinoids: 841.613 mg/unit

Total Cannabinoids: 841.613 mg/unit

 $\begin{array}{l} \label{eq:constraint} \end{tabular} Total THC/CBD is calculated using the following formulas to take into account the loss of a carboxyl group during the decarboxylation step: Total THC = <math display="inline">\Delta^0.THC$ + (THCa (0.877)) Total CBD = CBD + (CBDa (0.877)) \\ \\ \end{tabular} Sum of Cannabinoids = $\Delta^0.THC$ + THCa + CBD + CBDa + CBG + CBGa + THCV + THCVa + CBC + CBCa + CBDV + CBDVa + $\Delta^8.THC$ + CBL + CBN Total Cannabinoids = $(\Delta^0.THC+0.877^*THCa)$ + (CBD+0.877*CBGa) + (CBDV+0.877*CBGa) + (CBDV+0.877*CBCa) + (CBDV+0.877*CBCa) + $\Delta^8.THC$ + CBL + CBN \\ \\ \end{array}

For quality assurance purposes. Not a Regulatory Hemp Lab Test Report. These results relate only to the sample included on this report. This report shall not be reproduced, except in full, without written approval of the laboratory.

Sample Certification: Action Limits used in this report are a compilation of guidance from state regulatory agencies in all states except Alaska. Action limits for required tests are the lower of any conflicting state regulations.

Decision Rule: Statements of conformity (e.g. Pass/Fail) to specifications are made in this report without taking measurement uncertainty into account. Where statements of conformity are made in this report, the following decision rules are applied: PASS - Results within limits/specifications, FAIL - Results exceed limits/specifications. References: limit of detection (LOD), limit of quantification (LOQ), not detected (ND), not tested (NT)

Mithalffre

oved by: Josh Wurzer, President Appi

te: 02/23/2022

LQC verified by: Michael Pham Date: 02/23/2022

SC Laboratories California LLC. | 100 Pioneer Street, Suite E, Santa Cruz, CA 95060 | 866-435-0709 | sclabs.com | C8-0000013-LIC | ISO/IES 17025:2017 PJLA Accreditation Number 87168 © 2022 SC Labs all rights reserved. Trademarks referenced are trademarks of either SC Labs or their respective owners. MKT0002 REV9 2/22 CoA ID: 220222N010-001 Summary Page

Hemp Quality Assurance Testing CERTIFICATE OF ANALYSIS

CBDMD 750MG FULL SPECTRUM GUMMIES | DATE ISSUED 02/23/2022

Cannabinoid Analysis

Tested by high-performance liquid chromatography with diode-array detection (HPLC-DAD).

Method: QSP 1157 - Analysis of Cannabinoids by HPLC-DAD

TOTAL THC: 35.645 mg/unit

Total THC (Δ^9 -THC+0.877*THCa)

TOTAL CBD: 774.272 mg/unit

Total CBD (CBD+0.877*CBDa)

TOTAL CANNABINOIDS: 841.613 mg/unit

 $\begin{array}{l} \mbox{Total Cannabinoids} (\mbox{Total THC}) + (\mbox{Total CBD}) + \\ (\mbox{Total CBG}) + (\mbox{Total THCV}) + (\mbox{Total CBC}) + \\ (\mbox{Total CBDV}) + \Delta^8 \mbox{-THC} + \mbox{CBL} + \mbox{CBN} \end{array}$

TOTAL CBG: 6.582 mg/unit

Total CBG (CBG+0.877*CBGa)

TOTAL THCV: ND

Total THCV (THCV+0.877*THCVa)

TOTAL CBC: 17.013 mg/unit

Total CBC (CBC+0.877*CBCa)

TOTAL CBDV: 4.354 mg/unit

Total CBDV (CBDV+0.877*CBDVa)

CANNABINOID TEST RESULTS - 02/23/2022

COMPOUND	LOD/LOQ (mg/g)	MEASUREMENT UNCERTAINTY (mg/g)	RESULT (mg/g)	RESULT (%)
CBD	0.004 / 0.011	±0.2852	7.646	0.7646
∆ ⁹ -THC	0.002/0.014	±0.0193	0.352	0.0352
CBC	0.003 / 0.010	±0.0054	0.168	0.0168
CBG	0.002 / 0.006	±0.0032	0.065	0.0065
CBDV	0.002/0.012	±0.0018	0.043	0.0043
CBN	0.001/0.007	±0.0011	0.037	0.0037
CBL	0.003/0.010	N/A	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
∆ ⁸ -THC	0.01/0.02	N/A	ND	ND
THCa	0.001 / 0.005	N/A	ND	ND
THCV	0.002/0.012	N/A	ND	ND
THCVa	0.002/0.019	N/A	ND	ND
CBDa	0.001/0.026	N/A	ND	ND
CBDVa	0.001/0.018	N/A	ND	ND
CBGa	0.002/0.007	N/A	ND	ND
CBCa	0.001/0.015	N/A	ND	ND
SUM OF CANNABINOIDS			8.311 mg/g	0.8311%

Unit Mass: 101.265 grams per Unit / Serving Size: 3.3755 grams per Serving

Δ^{9} -THC per Unit	35.645 mg/unit
Δ^9 -THC per Serving	1.188 mg/serving
Total THC per Unit	35.645 mg/unit
Total THC per Serving	1.188 mg/serving
CBD per Unit	774.272 mg/unit
CBD per Serving	25.809 mg/serving
Total CBD per Unit	774.272 mg/unit
Total CBD per Serving	25.809 mg/serving
Sum of Cannabinoids per Unit	841.613 mg/unit
Sum of Cannabinoids per Serving	28.054 mg/serving
Total Cannabinoids per Unit	841.613 mg/unit
Total Cannabinoids per Serving	28.053 mg/serving